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Geometry of a Black Hole 
Collision 

Richard A. Matzner,* H. E. Seidel, Stuart L. Shapiro, L. Smarr, 
W.-M. Suen, Saul A. Teukolsky, J. Winicour 

The Binary Black Hole Alliance was formed to study the collision of black holes and the 
resulting gravitational radiation by computationally solving Einstein's equations for gen- 
eral relativity. The location of the black hole surface in a head-on collision has been 
determined in detail and is described here. The geometrical features that emerge are 
presented along with an analysis and explanation in terms of the spacetime curvature 
inherent in the strongly gravitating black hole region. This curvature plays a direct, 
important, and analytically explicable role in the formation and evolution of the event 
horizon associated with the surfaces of the black holes. 

Black  holes are small (a black hole of a 
million solar masses would be only as large 
as the sun), distant objects that have yet to 
be observed directly. But definite predic- 
tions about them come from detailed stud- 
ies of solutions of Einstein's equations of 
general relativity. Fortunately, analytical 
methods (1)  are powerful enough to solve 
these equations for a single, stationary black 
hole. However, this is not true for dynam- 
ically interacting black holes, believed to 
underlie some of the most dramatic phe- 
nomena in our universe. 

The two-body problem in general relativ- 
ity is still unsolved and is the subject of a 
National Science Foundation High-Perform- 
ance Computing and Communications 
Grand Challenge project, termed the Binary 
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Black Hole Alliance. The members of the 
Alliance include principal investigators at 
eight universities as well as a number of 
associates, collaborators, students, and post- 
doctoral fellows. The focus is to solve the 
problem as formulated topologically by Ein- 
stein and Rosen (2) in 1935 and as formu- 
lated numerically by DeWitt and Misner (3) 
in 1957. Solution of this 60-year-old prob- 
lem will require the teraflop supercomputers 
of the late 1990s. 

Supercomputers have advanced in 
speed by over 50,000 times since Hahn 
and Lindquist (4) made the first numerical 
attack on  the problem 30 years ago. Nearly 
20 years ago, Smarr and Eppley (5) ob- 
tained the first numerical solution of the 
head-on collision of two black holes of 
equal mass. They determined that the 
black holes did coalesce, radiating gravi- 
tational waves with energy of approxi- 
mately McZ, where M is the mass of 
the system and c is the speed of light. The  
gravitational waveform was similar to the 
damped vibrations ("ringing modes") fa- 
miliar from perturbation calculations of 
black holes (6). However, numerical in- 
stabilities prevented those early calcula- 
tions from being used to determine the 
details of the coalescence, which we report 
here. 
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The Alliance is committed to a 5-year 
investigation on the full inspiral and merger 
of two black holes orbiting about each oth- 
er. This fully three-dimensional problem is 
vastlv more com~lex than the head-on col- 
lisioi treated i n  this article. Nonetheless, 
we expect the full problem to bear many 
similarities. The Alliance's solutions will be 
very important to the LIGO gravitational 
wave observatory (7) ,  which is a system of 
large Michelson interferometer detectors of 
gravitational radiation presently under con- 
struction in the United States. LIGO is Dart 
of a global network, including the French- 
Italian VIRGO detector under construction 
near Pisa and other detectors in various 
stages of planning. 

Einstein's eauations are a set of nonlin- 
ear, coupled partial differential equations in 
space and time. The numerical solution for 
generic configurations of black holes is at 
the edge of possibility by using recent ad- 
vances in computer hardware and algo- 
rithms. We will not describe the details of 
the numerical computations here. Rather, 
we will oresent one of the first fruits of this 
collaborative effort: locating the precise sur- 
faces of black holes in axisymmetric config- 
urations as they collide, and mapping out 
their geometric structure. 

Black Holes 

John Wheeler (8) coined the insightful and 
provocative name "black holes" in the con- 
text of general relativity, Einstein's theory 
of gravity. However, the major properties of 
black holes can be understood in terms of 
Newtonian physics, together with the rela- 
tivistic principle that nothing can travel 
faster than the speed of light. A black hole 
is an "object" with an escape velocity equal 

Fig. 1. Photons emanating from a flashbulb gen- 
erate a compactified light "cone" in flat space- 
time. V, vertex (origin of the light rays); I+, infinity; 
2, circle representing the last time slice at infinity 
through the expanding sphere of light radiating 
from V; c, speed of light; t ,  time. 

to the speed of light (the escape velocity 
ue5, is the minimum velocity required to 
send an object to infinity). Long ago 
Laplace (9) noted that the escape velocity 
from the gravitational pull of a spherical 
star of mass M and radius R is 

where G is Newton's gravitational constant. 
Adding mass to the star (increasing M) or 
compressing the star (decreasing R )  increas- 
es vesc When the escape velocity exceeds c, 
even light cannot escape and the star be- 
comes a black hole. (For any known kind of 
matter, the gravitational field at this stage is 
so strong that the star inevitably collapses 
to an infinite density singularity.) 

The required radius RBH for a black hole 
of mass M follows from Eq. 1, with v,,, set 
equal to c: 

For a solar-mass black hole, M - 2 x 
g and RBH - 3 km. Remarkably, Eq. 2 holds 
even in general relativity, which describes 
gravitation by curvature of space and time 
thought of as one entity: spacetime. A black 
hole is a region where curvature traps light 
from escaping to infinity. 

To portray this idea, we use spacetime 
diagrams in which two spatial dimensions 
are drawn, as well as the evolution in time 
(depicted as the vertical direction). The 
spacetime trajectories of the photons ema- 
nating from a flashbulb are shown in Fig. 1. 
To get a useful picture, we must use the same 
units on all the axes. Thus, we plot time 
multiplied by c on the vertical axis. Then 
the path of a light ray, satisfying d(distance)/ 
dt = c, makes an angle of 45' with respect to 
the time axis. The third spatial direction ( y )  
is suppressed in the drawing in order to 
provide an intelligible perspective. Light 
from the flash travels outward in a spherical 
shell. (At any one time, a t = constant slice 
produces a circle in our diagram, our two- 
dimensional representation of a sphere.) To 
view the entire spacetime, we "compactify" 
it in the lightlike direction of the radiation 
travel, by rescaling the distance so that 
points at infinity, denoted by I t ,  are mapped 
to a finite location (10). With such a rescal- 
ing, the picture of the expanding shell of 
light has a finite outer boundary, corre- 
sponding to the last spherical time slice at 
infinity. The essential advantage gained 
here is that we can represent this last sphere 
by the circle 2 in our finite-sized diagram. 
We will use this picture of a light "cone" in 
flat spacetime (spacetime with no gravita- 
tional field) to explain the curved spacetime 
geometry for the case of a head-on collision 
of two black holes. 

Now consider a spherical star cluster 
that collapses to a black hole. Figure 2 is the 
spacetime diagram. The infalling stars even- 
tually produce a region at the center where 
ue,, = c. As more stars fall in, this region 
grows. Finally, after all the stars fall in, the 
size of this region remains constant. The 
stars eventually collapse to an infinite den- 
sity singularity indicated by the jagged line. 
The black hole first forms at the center, and 
as it grows, it surrounds the singularity, in 
accord with the hypothesis of cosmic cen- 
sorship that states that singularities must 
not be visible to distant observers. The 
evolution of the surface of the black hole 
traces out a curved version of a light cone, 
indicated in Fig. 2 by H. 

Except for its curvature, H is analogous 
to the light cone in Fig. 1. It forms at t = tB 
(B for "birth") in the diagram, where light 
ravs from the center of the cluster iust miss 
escaping to infinity. These light rays pro- 
vide the skeletal structure of the black hole 
analogous to the way stralght lines rule 
(generate) a cone in Euclidean geometry. 
As these ravs diverge outward from the 
center, the gravitational attraction of the 
infalling matter distorts the spacetime so 
that they do not expand indefinitely but 
"hover" at the final black hole radius. At 
late times thev therefore define a nondi- 
verging (and nbnconverging) parallel cylin- 
der (topologically S2 x R1, where S2 is the 
sphere and R1 is the line), which is gener- 
ated by the rays. 

Imagine repeatedly setting off a flash at 
the center. Before the black hole forms, the 
light flashes travel out to infinity. The sur- 
face of the black hole is determined by that 
particular light cone that just misses escap- 
ing to infinity. This is a subtle concept that 
involves the complete future history of the 
system. One must first find the special 
sphere of light rays that is hovering at late 
times and then trace it back to find its 

Fig. 2. Spacetime diagram for a spherical col- 
lapse to a black hole. H, trace of the evolution of 
the black hole surface or horizon; t ,, time at 
which the black hole was "born." 
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birth. To appreciate the reverse time order 
necessary for this construction, imagine a 
diagram like Fig. 2 but with an additional 
hollow suherical shell of matter falling in at - 
late times. The additional gravitational at- 
traction from this shell would be sufficient 
to refocus to a point the nondiverging por- 
tion of the cone drawn in Fig. 2. Indeed, in 
that case, a cone that emerged from a slight- 
ly earlier flash, and that would otherwise 
expand to infinity, would now be deflected 
inward to exactly zero divergence at late 
times and would thus form the actual black 
hole surface. 

The final equilibrium state formed after 
matter and energy stop falling into the hole 
is well understood. There are theorems that 
state that when the black hole eventuallv 
settles down to a stationary configuration, 
its gravitational field has the analytic form 
of a Kerr black hole which is uniquely de- 
termined by its mass and angular momen- 

Fig. 3. Snapshots of the collision and merger of 
two black holes formed by the collapse of two 
balls of particles. The spatial location of the event 
horizon is shown in black. The clock in each 
frame shows the fraction of time elapsed during 
the simulation. 

tum. They are called "no hair" theorems to 
emphasize the simplicity of the black hole 
equilibrium state. (Electric charge is also 
allowed but is irrelevant for astrophysically 
realistic black holes.) 

Because light cannot escape the black 
hole surface, events that occur inside can- 
not be seen from outside. Hence, the name 
black hole event horizon is used to denote 
the evolution of the black hole surface. It is 
a horizon because we cannot see bevond it. 
In our computations to be described below, 
we use the fact that the black hole state is 
known at late times to find the event hori- 
zon at late times. Then our methods inte- 
grate back into the past to determine the 
horizon structure during the earlier dynam- 
ical Dart of the evolution. 

General relativity allows not only black 
holes formed by matter collapse but also 
black holes that are stable topological struc- 
tures in spacetime and need have no matter 
content at all. Such black holes do have 
mass, and the nonlinearity of their gravita- 
tional field creates curvature that holds 
them together. We will return to such 
"eternal" black holes below (1 1-1 3). 

Referring to Fig. 2, we can verify'several 
key properties that apply to event horizons 
in general: (i) The horizon is generated by 
light rays passing through each point in the 
horizon, and (assuming cosmic censorship) 
these generators continue along the horizon 
forever into the future. (ii) The horizon . . 
begins where these generators meet in the 
past. (iii) The cross-sectional area of the 
horizon monotonically increases and ap- 
proaches a constant at late time. (For a 
single spherical black hole, the area ap- 
proaches the value 4aRBH2.) 

The collision of two black holes cannot 
be treated analytically and requires full- 
fledged computation. We have simulated the 
head-on collision of nonrotating black holes 
of equal mass to form a single black hole 
(14). In this simulation, each black hole is 
formed from the collapse of a spherical ball 

of noncolliding particles, analogous to the 
stars in a spherical galaxy. Each ball collapses 
because the particles are chosen to have no 
initial motion. Thus, there is no centrifugal 
force to balance the inward pull of gravity. 
To mimic a collision, we begin the simula- 
tion with the two clusters well se~arated but 
headed toward each other with a velocity of 
0.15~. This initial configuration is shown in 
the first frame of Fig. 3 (the initial separation 
is about five times the radius of the final 
black hole). The two clusters then fall to- 
ward each other while individually collaps- 
ing to form black holes. The individual black 
holes originate at the center of each cluster 
and then mow outward. The second frame of - 
Fig. 3 depicts the instant at which these two 
tidallv distorted black holes first touch. The 
black holes then merge and in the process 
convert -3 x lop4 of the svstem's mass into 
energy in the form of gravitational waves 
radiating outward. The last frame of Fig. 3 
shows the end of the simulation, with a 
single black hole encompassing all of the 
matter. The final black hole is settline into a - 
spherical equilibrium state. 

Figure 3 provides a picture, in ordinary 
three-dimensional space, of the black hole 
formation and merger process at three in- 
stants of time. The complete numerical evo- 
lution constructs these spatial pictures in an 
almost continuous wav. like the frames of a , , 
movie. From these spatial pictures, we can 
reconstruct a four-dimensional s~acetime 
description of the evolution. In a spacetime 
diagram, each frame of the type shown in 
Fig. 3 would correspond to a horizontal slice, 
representing all of space at a given instant of 
time. We have mapped out the location of 
the event horizon in this computed space- 
time by numerically propagating light rays 
[see (15), especially figure 31. 

Figure 4 is a spacetime picture showing 
some of these light rays superimposed on 
the .resulting event horizon. It was con- 
structed by propagating light rays backward 
in time from the surface of the final equi- 

Fig. 4. Computational construction 
of some of the light rays generating 
the horizon for the case shown in 
Fig. 3. The collision axis goes from 
left to right, and the time axis is ver- 
tical. The inset zooms in on the 
caustic and crossover structure at 
the birth of the horizon. 
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librium black hole with the ideas in (16, 
17). The blue slice at the too of Fie. 4 - 
corresponds to the end of the simulation, 
the final frame of Fig. 3. The picture repre- 
sents a calculation of the "pair of pants" 
description of the event horizon as sketched 
by Hawking and Ellis [(18), figure 601 or 
Misner, Thorne, and Wheeler [(I 9) ,  figure 
34.61 more than 20 years ago. We see by 
tracing the rays backward in time that some 
of them cross each other and leave the 
horizon. The simulation helps reveal the 
important role of these crossovers as the 
initial events where the horizon forms. The 
inset shows a closer view of the beginning 
of the horizon and how the rays behave 
near those events. 

The crossovers are the earliest points 
along the rays that lie on the horizon. Be- 
fore crossing, these rays travel in a region of 
spacetime to the past of the horizon that is 
visible to a distant observer. This is clear 
from the light cone of Fig. 1: any ray con- 
tinued backward through the vertex V, 
where it intersects other rays, enters the 
spacetime region to the past of V, which is 
visible to distant observers at I +  at times 
before 2,. Crossovers are ubiquitous features 
of black hole interactions. The attractive 
nature of gravity causes even a beam that 
initially has perfectly parallel rays to bend 
and self-intersect, analogous to the intersec- 
tion of two flashlight beams from separate 
directions. In Fig. 4, a line of such crossover 
points extends from the "crotch" on the 
"pair of pants" down along each inside trou- 
ser "seam," around each bottom, and a small 
distance up each outside "seam." At  the 
endpoints of the line of crossovers, slightly 
up the outside of each "leg," are caustics, 
analogous to a focal point where a single 
flashlight beam would converge to infinite 
intensity (if it were not for diffraction). In 
the spherically symmetric case, the beam 
emerging from a point caustic would, if grav- 
ity were weak, trace out the light cone of 
Fig. 1 or, if gravity were sufficiently strong, 
trace out the horizon for the single black 
hole of Fig. 2. The tidal effects of the col- 
liding black holes shift the location of the 
caustics and lead to the line of crossovers. 
We will see below how this comes about. 

One feature of Fig. 4 deserves comment. 
The figure makes it appear that the area of 
the horizon decreases at late times, contrary 
to property (iii) above. In fact, a careful 
check of the computed spacetime shows 
that the horizon area increases asymptoti- 
cally to a constant value at late times. The 
apparent decrease is an artifact of the coor- 
dinates chosen to represent the horizon in 
Fig. 4. Figure 10, which is for a different 
simulation and is fully discussed in the sec- 
tion entitled "Vacuum Black Hole Colli- 
sions," is a visualization in which this effect 
has been rigorously controlled (20). 

Fig. 5. The lower diagram illustrates colliding l~ght 
cones in a flat spacetime. The upper diagram illus- 
trates the event horizon corresponding to the sur- 
face B at inf~nity I + .  The compactification distorts 
spatial directions so that the (ct,x,z) "compass" is 
only schematic. In particular, the +x direction ray 
from V, intersects the +x direction ray from V, at 
the k ~ n k  in 8. In the diagrams, these rays appear to 
have a spurious z-motion, which is the price we 
pay for compactification. Similar comments apply 
to Figs. 6 and 9. X, crossover line. 

Colliding Light Cones 

Consider the collision of two black holes in 
terms of the soacetime oicture of the colli- 
sion of two light cones depicted in the 
lower diagram of Fig. 5. In this compactified 
picture, the vertices V1 and V2 of the light 
cones are separated along the z axis, about 
which the collision has rotational symme- 
try. This axisymmetry makes it possible for a 
three-dimensional (t,x,z) picture to repre- 
sent all aspects of the collision. Each point 
on the x axis corresponds to a '  circle of 
axisymmetry- in the x ,y  plane, centered 
about the z axis. In the picture, points with 
the same t and z but with values t x  lie on 
the same circle. and the circle reduces to a 
single point on the z axis where x = 0. 

Each light cone intersects infinity in a 
sphere. But to discuss a "sphere at late 
times" that resembles the late-time spheri- 
cal surface of a black hole, we restrict at- 
tention to the two "outside" hemispheres in 
which the light rays from one vertex reach 
infinity without hitting rays from the other 
vertex. These two hemispheres join togeth- 
er to form 2, the closed two-dimensional 
surface at infinity indicated in Fig. 5. The 
surface 2, is kinked where the two hemi- 
spheres join in a circle in the x ,y  plane. Our 
figure shows two kinks (corresponding to 
the two intersections of that circle with the 

Line of crossovers 

Fig. 6. Deformation of the crossover line in Fig. 5 
due to spacetime curvature. 

x axis). One of these kinks corresponds to 
the two light rays, one from each vertex, 
traveling in the positive x direction. Be- 
cause these two rays are parallel, they meet 
at infinity. The other kink corresponds to 
the analogous rays traveling in the negative 
x direction from the vertices. [The radial 
compactification distorts the apparent di- 
rection of the rays so that the ray in the +x 
direction from each vertex appears to have 
a motion in the z direction. We must draw 
them this way so that the parallel rays even- 
tually intersect at I + ,  in this case at the kink 
in 2,. This means that we view the (ct,x,z) 
"compass" in Fig. 5 as only schematic.] 

The collision takes place between the 
hemisohere of ravs from each vertex that 
head ioward each other. The ray in the 
positive z direction from V1 collides first 
with the ray in the negative z direction 
from VZ. The entire set of colliding rays is 
indicated in the figure by the parabola, 
which is the conic section formed by the 
intersection of the light cones with the x,t 
olane located midwav between them. 

In this flat spacetime model, the parab- 
ola of collision points is the analog of the 
strong geometrical interaction occurring in 
the collision of two black holes. The analog 
of the horizon H is the boundarv of the 
region visible to observers at infiniiy before 
the time corresponding to the surface 2. 
The analog of an observer in a black hole 
spacetime is an observer outside the light 
cone stretching back from 2. We shall call " 

that structure H in this case also. 
To construct H, we trace back all of the 

light rays reaching 2 until they meet one of 
the other rays in either a crossover or a 
caustic. Obviously, the rays from one out- 
side hemisphere converge to V1 and those 
from the other outside hemisphere con- 
verge to VZ. 

But what about the rays traced back from 
the kinks on C where the hemispheres join? 
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Fig. 8. Spacet~me version of Fig. 7, with time 
d~rected veriically. 

Fig. 7. Spat~al p~cture of a generic cusp caustic (C) 
produced by an aspher~cal beam. F, fold line; L, 
lhght ray. 

Two of these are the rays from V1 and V2 
that travel in the positive x direction. These 
parallel rays intersect a t  infinity. In fact, all 

effect of curvature must be included. The  
vertices of the light cones in Fig. 6 are 
caustic points corresponding to the focus of 
a finite solid angle of rays. These point 
caustics arise from the spherical symmetry 
of the light cones in our flat spacetime 
model. In reality, point caustics are highly 

parallel rays in the positive x direction start- 
ing from points along the z axis between V1 
and V2 have the same "endpoint" at infin- 
ity, the kink at the end of the parabolic arc 
formed by the colliding outgoing rays. In 
the backward time direction, each of these 
rays intersects, at x = 0, the opposite ray 
traveling in the negative x direction from 
the opposite kink. From these clues, we see 
that H corresoonds to the two half-cones 
from V1 and \j2 together with the two sets 
of parallel rays sweeping out in the t x  
direction as illustrated in the upper diagram 
of Fig. 5. These rays originate at points of H 
along the spatial line on  the z axis connect- 
ing Vl  and V,. This part of the z axis is the 
crossover line where rays from t x  direction 
intersect. Note also the surprising result 
that the parabola formed by the colliding 
ravs is to the future of H and therefore 
inhisible to observers "outside the horizon." 

Deforming the Picture 

Our picture is beginning to resemble the 
horizon formed in the simulated collision 
between two black holes. T o  make it more 
realistic, the gravitational effect of space- 
time curvature must be included. T h e  
strong gravitational field near the holes 
causes light rays to bend inward toward one 
another. Tracing the rays generating H 
backward from infinitv, this effect causes 
them to intersect "sooker" along a curved 
spatial crossover line, as depicted in Fig. 6. 
In this figure, we have also smoothed out 
the kinks on X, which has a similar effect as 
curvature to cause the crossover line X 
where H originates to bulge upward. X cor- 
responds to a seam on  the inside pant legs 
in the trouser oicture of the black hole 
collision; the shape is bowlegged, and the 
profile corresponds to a smooth spatial line 
with no special sharpness at the midpoint of 
the seam where the legs join. 

T o  complete the picture, another subtle 

unlikely to occur in a generic system. Any 
slight perturbation of spherical symmetry 
destroys the perfect focus in an unstable, 
unpredictable manner. Such results have 
been made rigorous by using the methods of 
catastrophe theory (21) and nonlinear dy- 
namics (22). The  spatial geometry of the 
rav structure of the elementarv stable caus- 
tiis has ieceived a great deal'of attention 
because of their omnipresence in classical 
and diffraction optics (23). 

In the presence of rotational symmetry 
about an axis. as in our simulations, the 
only stable caustics consist of cusps and 
folds. Figure 7 illustrates a spatial picture of 
a typical axisymmetric wavefront converg- 
ing to a caustic, with the circles of axisym- 
metry suppressed. The  light ray L encoun- 
ters a cusp caustic at the point C, but light 
rays L1 just below L do not focus at C but 
along the fold line F,. Similarly, light rays 
L, focus along the fold line F2. Of special 
imoortance to the structure of hor~zons, the 
rays L1 and L2 intersect along a crossover 
line X before they reach their respective 
fold llnes. Hence, we expect the point caus- 
tics of our flat space model to be replaced by 
cusp caustics; connected by a crossover line. 

The  major theoretical investigations of 
caustics have typically dealt with steady 
bright patterns, which result from the time- 
averaged appearance of an optical frequen- 
cy beam. The  spacetime geometry has re- 
ceived relatively little attention, except in 
general relativity. The  pioneering stud~es of 
Penrose (24), which led to the first proof 
that singularities result from gravitational 
collapse, were based on  the spacetime prop- 
erties of caustics. Many details of the space- 
time geometry of the elementary st,aljlle 
caustics have now been worked out (25). 

Figure 8 is the spacetime version bf Fig. 
7 and exhibits some of those details. The  
ray L traced backward in time along the 
horizon encounters a cusp polnt C. From 
the spacetime event C, L continues on  into 

the past, but for simplicity we suppress that 
here, because the portion of L to the past of 
C is not on  the horizon but in the visible 
region of spacetime. The  horizon begins 
where its generating rays meet, either at 
caustics or at crossover points. The  fold 
lines F1 and F2 are also not on the horizon 
because the rays L1 and L2 meet (traveling 
backward) along the crossover line X before 
they meet F1 or F2. Only the cusp C at the 
tip of the crossover line is on the horizon 
and thus not visible to distant observers. 

The  entire crossover line X is also on the 
horizon; it is where the bulk of the genera- 
tors originate. Crossover lines, which arise 
when two separate beams of rays intersect, 
must be spacelike. This means that the lines 
cannot be traced by light rays or particles 
moving at less than c. Their detailed prop- 
erties have not been studied as extensively 
as caustics, where a single beam focuses. 
Our computational study of the cusp caustic 
reveals the surprising result that the cross- 
over line, although spacelike at each point, 
becomes asymptotically lightlike as it ap- 
proaches the cusp C. As a result, X joins 
smoothly onto the light ray L, as shown in 
Fig. 8. This is the final clue necessary to 
deform Fig. 6 into the horizon found in the 
collision between black holes. 

Putting the Pieces Together 

The qualitative features of the stable caus- 
tics are oreserved bv ~erturbations, whether , 
due to the refractive properties of a medium 
or to the gravitational curvature of space- 
time. Even more relevant to the simulation 
of black holes, they are insensitive to small 
numerical error. Thus, in the axisvmmetric 
case of a head-on collision, one ekpects to 
find cusps on  the horizon. However, the 
stability is only a local'property that de- 
scribes the generic behavior in the neigh- 
borhood of the cusp. Pieces of the horizon 
can be expected to resemble Fig. 8, but the 
pieces must be put together. T h e  way to do 
this is suggested by a comparison of Figs. 6 
and 8. By replacing the unstable feature of 
Fig. 6, the point vertices V1 and V,, each by 
the cusp of Fig. 8, we obtain the stable 
horizon structure shown in Fig. 9. Figure 9 
supplies the "key" to the computed black 
hole structure in Fig. 4. It shows a cusp C on  
the outside of each "trouser leg." The  cusps 
are connected by a spatial crossover line X, 
which forms a seam on  the trousers. The  
seam joins smoothly with the two light rays, 
analogs of L in Fig. 8, emanating from the 
cusps (26). Those rays are exceptional. The  
other light ravs emanate from X in  airs 
(the ciycles of axisymmetry being 'sup- 
pressed), one up the front of the trousers 
and one uo the back. The  final black hole 
equilibrium state long after the collision 1s 
a sphere, represented by a circle (and X is 
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almost circular) in our figure. This pro- 
vides a consistent theoretical model for 
our computations. 

A final point. The crossover line drawn 
in Fig. 9 is actually a caustic in the exactly 
axisymmetric case, because it is the focal 
line of a circle of rays in the x,y plane. 
However, under a perturbation away from 
exact axisymmetry there would be defocus- 
ing, and this line would broaden into a 
two-dimensional crossover surface. 

Vacuum Black Hole Collisions 

We turn now to vacuum black holes, often 
called "eternal" black holes because they are 
not formed from matter colla~se but are Der- 
manent features of solutions of the nonlinear 
Einstein equations. At t = tinitial, we choose 
a system consisting of two nonrotating black 
holes poised near one another. The field 
data are momentarily stationary (the field 
momenta vanish and tinirial is a moment of 
time symmetry of the fields, though as we 
shall see, the horizon is not time symmetric) 
(27). We have evolved this system (1 6, 1 l- 
13, 28) into the future from tlnitial for a time 
-150 GM/c3, and backward in time for -8 
GM/c3 (where M is the mass of the final 
black hole) (Fig. 10). For a solar mass black 
hole, these times are less than s, indi- 
cating the violent nature of the merger. 

At late times. the horizon oscillates with 
decaying amplitude around a spherical shape 
(12, 16, 17). When disturbed, a black hole 
will vibrate and emit gravitational waves 
with a characteristic frequency determined 
by its mass and spin, just as a bell emits 
sound waves when struck by a mallet. As 
these ringing modes subside, the hole settles 
down to the known equilibrium solution, 
which provides us with the black hole sur- 
face at late times. We then integrate back- 

ine of crossovers 

Fig. 9. Key for Fig. 4: The horizon formed by the 
merger of two black holes. The base contains two 
versions of the cusp in Fig. 8 joined by a common 
crossover line X. 

ward in time (16, 17) to locate the surface at 
earlier times. Figure 10 shows the horizon 
structure in the most interesting epoch, 
starting from 5 GM/c3 in the past of begin- 
ning of coalescence up to 20 GM/c3 in the 
future. Figure 10 differs from Fig. 4 in two 
important ways. First, the black holes in Fig. 
4 are "born" and the horizon's origin can be 
studied, as discussed above, whereas the 
black holes in Fig. 10 exist eternally. Second, 
Fig. 4 gives a coordinate description of the 
horizon, whereas Fig. 10 gives a more intrin- 
sic visualization of the horizon geometry in 
terms of the time evolution of its polar cir- 
cumference. This reveals the monotonic in- 
crease and asymptotic constancy of the area, 
consistent with the black hole theorems. 

Unlike the matter-filled collapse, the 
trouser legs in Fig. 10 do not have cusps but 
continue into the past from our diagram. We 
do find a crossover line along the inside 
trouser seam, exactly analogous to that in 
Fig. 4 for our matter simulation. Although 
spacetime is symmetric in time about tlnirlal, 
the horizon itself is not time-symmetric rays 
but expands monotonically into the future. 
This expansion of the actual rays tracing the 
horizon is clearly visible at tinitial in Fig. 10. 

From the time symmetry of the system, 
one might have na~vely (and incorrectly) 
concluded that its Dast evolution describes a 
time-reversed collision: radiation impinging 
on a single black hole, blowing it into two - - 
holes that come to a momentarily station- 
ary pause at the "initial" time, with radia- 
tion then emitted as the holes merge. Such 
expectations of the dynamics turn out to be 
wrong. Except in a completely stationary 
case, the horizon cannot behave symmetri- 
cally about tinitial. This is an obvious con- 
clusion from two theorems by Hawking: 
The area of a black hole always increases 
(29) [see property (iii) above], and black 
holes cannot bifurcate (30). Generically, an 
event horizon is not time symmetric. 

Fig. 10. Computer simulation of the collision be- 
tween two vacuum black holes. 

Conclusion 

Before having computational tools for study- 
ing the collision and merger of two black 
holes, we had to rely on sketches and intel- 
ligent guesses to describe the interaction. 
Now the numerical simulations have re- 
vealed new qualitative features of the colli- 
sion and have pointed the way to simple 
analytic models that reveal the underlying 
physics. Specifically, the computations have 
led to the discovery of the exact nature of 
the crossover line and its caustic endpoints 
at the formation of the horizon. 

An even more formidable challenge will 
be to track the coalescence and merger of 
two black holes in a circular orbit as they 
spiral together because of the emission of 
gravitational waves. This scenario is astro- 
physically more realistic than the head-on 
collision considered here. However, the total 
lack of symmetry will require sophisticated 
new algorithms and will tax the most pow- 
erful computers. Work is in progress to meet 
this next challenge. 
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Geophysics of the Pitman Fracture 
zone-and Pacific-An tarctic Plate 

Motions During the Cenozoic 
Steven C. Cande, Carol A. Raymond, Joann Stock, 

William F. Haxby 

Multibeam bathymetry and magnetometer data from the Pitman fracture zone (FZ) permit 
construction of a plate motion history for the South Pacific over the past 65 million years. 
Reconstructions show that motion between the Antarctic and Bellingshausen plates was 
smaller than previously hypothesized and ended earlier, at chron C27 (61 million years 
ago). The fixed hot-spot hypothesis and published paleomagnetic data require additional 
motion elsewhere during the early Tertiary, either between East Antarctica and West 
Antarctica or between the North and South Pacific. A plate reorganization at chron C27 
initiated the Pitman FZ and may have been responsible for the other right-stepping 
fracture zones along the ridge. An abrupt (8") clockwise rotation in the abyssal hill fabric 
along the Pitman flowline near the young end of chron C3a (5.9 million years ago) dates 
the major change in Pacific-Antarctic relative motion in the late Neogene. 

T h e  Pacific-Antarctic Ridge is the key link 
in the global plate circuit tying the relative 
motion of the oceanic plates of the Pacific 
basin to the rest of the world (1, 2). For 
example, one of the more astounding con- 
sequences of rigid plate tectonics is that the 
accuracy of models of western North Amer- 
ican deformation, including motion on the 
San Andreas fault, depends on how well 
magnetic anomalies and fracture zones 
(FZs) can be reconstructed in the far South 
Pacific (3,  4) .  Because key areas in the 
South Pacific are remote and poorly sur- 
veyed, circum-Pacific plate reconstructions 
have continued to have large uncertainties 
while uncertainties in other links in the 
global plate motion circuit have been pro- 
gressively reduced. In this paper we describe 
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a geophysical survey of an  FZ near the 
southernmost end of the Pacific-Antarctic 
ridge that enables us to greatly reduce the 
uncertainties in the global plate circuit. 

Plate motions and global tectonics. Sev- 
eral fundamental questions of circum-Pacif- 
ic tectonics can be addressed by a better 
understanding of Pacific-Antarctic plate 
motions. For the South Pacific, some of the 
most important unresolved issues involve 
the timing and amount of early Tertiary 
relative motion between East and West 
Antarctica and between the Lord Howe 
Rise and Campbell Plateau, two of the links 
in the plate loop tying the Pacific, Austra- 
lia, and Antarctic plates together (2, 5). A 
global hot-spot reference frame also de- 
pends on the accuracy of the Pacific-Ant- 
arctic link. Atlantic and Indian Ocean hot' 
spots, when rotated back to the Pacific, do a 
poor job of predicting the track of the Ha- 
waiian hot spot (6-8), raising questions of 
the fixity of hot spots (9). Non-Pacific pa- 
leomagnetic poles, when rotated back to the 
Pacific, do not agree with Pacific plate pa- 
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leomagnetic poles. This misfit has led to the 
suggestion that there may be one or more 
missing plate boundaries between the North 
Pacific and East Antarctica (1 0 ,  1 1 ). 

These unresolved questions have led to 
several hypotheses. Stock and Molnar (9) 
proposed that several puzzling aspects of 
earlv Tertiarv Pacific tectonics could be 
explained if there was an undiscovered fos- 
sil spreading center in the Southeast Pacific 
that sevarated the region of the Antarctic " 
plate near the Bellingshausen Basin (re- 
ferred to as the Bellingshausen plate) from 
the part of the Antarctic plate adjacent to 
Marie Byrd Land (see Fig. 1). This scenario 
provided a better fit to magnetic anomaly 
data from chron C30 to chron C25 south of 
the Campbell Plateau; it reduced the 
amount of unex~ected motion in the loov 
among the Australia, Antarctic, and Pacific 
dates  In the earlv Tertiarv: and it also , . 
helped to explain ;he failure of global re- 
constructions to predict the bend in the 
Hawaiian-Emperor chain (1 2). 

Numerous tectonic issues can also be 
addressed bv increasing the resolution of 
plate reconskructions. Skveral studles have 
proposed that there was a late Neogene 
change in the absolute motion of the Pacif- 

0 

ic plate, corresponding to a clockwise rota- 
tion in the separation direction of the Pa- 
cific and Antarctic plates (1 3-1 6). The age 
of this event, however, has been difficult to 
establish with the pre-existing data sets; 
estimates of its age vary from less than 9.8 
Ma (million years ago) (1 3) ,  5 Ma (1 4) ,  5 to 
3.2 Ma (15) to 3.86 to 3.4 Ma (16). Its 
exact age is of considerable interest because 
a number of late Neoeene events around - 
the Pacific, such as the onset of Pliocene 
compression along the San Andreas fault 
(15, 17), have been attributed to it. 

Recent studies of the Paclfic-Antarctic 
ridge have focused on  interpreting satellite 
radar altimetry data collected by SEASAT 
and GEOSAT, which provide new data on 
the location of FZs (18-20). However. al- 
though images of thd gravit; fleld over'the 
seafloor generated from satellite radar al- 
tlmetry measurements have provided im- 
proved locations and trends of FZs and oth- 
er tectonic features, without shipboard geo- 
physical measurements in certain critical 
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