
and shoulder girdle muscles. 
LGMD is genetically heterogeneous with 

a dominant form (LGMD-1A) mapping to 
5q and four recessive forms (LGMD-2A, 
2B, 2C, 2D) mapping to 15q, 2p, 13q, and 
17q, respectively; the latter two co-map 
with the y- and a-sarcoglycan genes. Lim et  
al. (2) have now demonstrated that LGMD 
in the old order Amish of southern Indiana 
is linked to markers on 4q, indicating the 
existence of another locus (LGMD-ZE), 
and have shown that this locus is the B- 
sarcoglycan gene at 4q12. The homozygohs 
missense mutation in the affected members 
results in loss of all three sarcoglycans from 
the muscle membrane. This result was sur- 
prising because the Amish of northern Indi- 
ana, despite a common European origin 
(the Canton of Bern, Switzerland), exhibit 
LGMD-2A caused by mutations in the gene 
at 15q15 that encodes the muscle-specific 
proteolytic enzyme calpain-3 (1 2). 

Further evidence for P-sarcoglycan in- 
volvement comes from Bonnemann et al. 
(3), who analyzed cDNA from 62 unrelated 
dystrophin-positive patients with muscular 
dystrophy and found one individual with 
mutations in the P-sarcoglycan gene. This was 
a 3-vear-old female with moderate muscle 
weakness and dystrophic changes similar to 
a DMD or SCARMD phenotype. One al- 
lele carried, a stop codon mutation and the 
other an 8-bp duplication that resulted in a 
stop codon. Her muscle biopsy was positive 
for dystrophin immunostaining but negative 
for the three sarcoglycans, similar to the bi- 
opsies from the Amish, indicating that the 
sarcoglycan complex may act as a func- 
tional unit distinct from the dystroglycan 
complex. This complex is also deficient in 
the cardiomyopathic hamster, although a 
specific mutation has not yet been reported. 

The dystrophin complex is clearly required 
for the maintenance of normal muscle. The 
sarcoglycan complex is certainly as important 
as dystrophin, and loss-of-function muta- 
tions in the dystrophin gene or any of the 
three sarcoglycan genes results in a severe 
phenotype. Mutations that cause partial 
loss of function (missense or non-frame- 
shifting deletions) in dystrophin produce a 
milder BMD phenotype and in the sarco- 
glycans appear to cause a mild LGMD. To 
complete the picture, loss-of-function mu- 
tations in the merosin gene have recently 
been described in severe congenital muscu- 
lar dystrophy (CMD) (13), and merosin is 
deficient in the dystrophic dy/dy mouse (14, 
15). To date, no genetic lesions have been 
described for a- or P-dystroglycan that 
bridge between dystrophin and merosin. 

The function of the complex remains a 
mystery. Is it merely structural, protecting 
the integrity of the membrane? Or do the 
proteins of the complex have other, non- 
structural roles? Could they form the 

stretch-activated calcium channel that is 
defective in DMD muscle? Many questions 
remain without answers, but at least we 
now know the questions. 
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Cracking the Neuronal Code 

David Ferster and Nelson Spruston 

T o  control behavior, the central nervous 
system employs approximately one trillion 
(1012) neurons, all connected in networks 
of unfathomable complexity. The challenge 
for neuroscientists is to learn how these net- 
works do their job. For decades, most neuro- 
physiologists have assumed that a neuron's 
information content is contained solelv in 
its firing rate, the number of action poten- 
tials it sends down its axon in any given pe- 
riod. An alternative view-that temporal 
firing patterns contain information-al- 
though considered somewhat heretical. is 
gainLg attention as a result of new thko- 
retical and experimental approaches. 

Consider the firing pattern of the neu- 
ron in the figure. Three groups of 10 action 
potentials occurring in a 100-ms period 
travel down the axon, each group occurring 
in a different temporal pattern (three in- 
sets). According to the rate code hypoth- 
esis, the timing of each change in firing rate 
would indicate when an event occurred, 
and the strength of the increase might re- 
port how strong the stimulus was (1). In 
each case, however, the "what" of the 
stimulus would be the same; any single neu- 
ron could code for the presence of only a 
single stimulus property. By averaging the 
firing rates of a number of neurons respond- 
ing to the same stimulus property, the ner- 
vous system could determine the strength of 
that stimulus at any point in time. By con- 
sidering the activity of many such popula- 
tions responding to different stimulus prop- 
erties, the exact nature of a complex stimu- 
lus could be deciphered, as originally postu- 
lated in the line-labeling models of neu- 
ronal coding in peripheral nerves (2, 3). 

In contrast to the rate code model, the 
temporal code hypothesis holds that the fir- 
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ing pattern of an individual neuron could 
report different "whats," even while the av- 
erage firing rate remained unchanged. A 
single neuron like the one in the figure 
could report the presence of three different 
stimuli with the three different temporal 
firing patterns shown in the insets. Such a 
temporal code could, in principle, resolve 
some of the apparent ambiguity of the in- 
formation provided by neurons of the visual 
cortex. The response of each cortical neu- 
ron is dependent on many different features 
of a stimulus-for example, its orientation, 
its length, or its contrast. A rate code re- 
quires that the brain determine the exact 
nature of the stimulus by comparing the 
output of many different neurons; in a tem- 
poral code, one neuron could unambigu- 
ously code changes in a single feature of the 
stimulus by emitting one of a large reper- 
toire of temporal output patterns (4). 

Despite the appeal qf packing a large 
amount of complex information into the 
spike train of a single neuron, the temporal 
code hypothesis has yet to be universally 
accepted. In many parts of the brain, neu- 
rons fire in highly irregular temporal pat- 
terns. But do such patterns encode different 
events, or are they merely random noise su- 
perimposed on a basic firing rate? 

One approach to this question is to con- 
sider the mechanisms whereby irregular fir- 
ing might arise. The long-standing "inte- 
grate and fire" models of neuronal function 
produce highly regular firing patterns (5). 
Two alternative models (6-8) have sug- 
gested different mechanisms for generating 
the highly irregular spike intervals observed 
in the visual cortex. One model is well suited 
to precise temporal coding; the other is a 
random process that precludes such coding. 

The first model is based on the concept 
that rapidly rising depolarizations are re- 
quired to trigger action potentials that ac- 
curately reflect the timing of synaptic in- 



puts (9). Softky and Koch suggest that such 
events are generated when a sufficient num- 
ber of synaptic inputs are activated simulta- 
neously (5, 7). In this model, then, single 
events generated several milliseconds apart 
must be prevented from summating to pro- 
duce slow de~olarizations to threshold, so 
synaptic potentials must decay more quickly 
than dictated by the passive electrical prop- 
erties of the neuron. To allow coincidence 
detection, Softky and Koch incorporated 
dendritic K+ conductances tuned to accel- 
erate the decay of synaptic potentials (10). 
In addition, Na+ conductances in the den- 
drites of the model amplify synaptic poten- 
tials, thus reducing the number of coinci- 
dent synaptic inputs required to fire a spike. 
There is little evidence, however, that den- 
dritic conductances shape synaptic inputs 
in the service of coincidence detection. 

Contrasting this coincidence model is 
the "random walk" model (6, 11 ). In this 
model, a stimulus evokes a bamge of tem- 
porally uncorrelated excitatory and inhibi- 
tory synaptic events that step the mem- 
brane potential up and down in random 
temporal patterns. A slight preponderance 
of excitation increases the frequency with 
which the membrane potential reaches 
threshold. Because this model lacks special- 
ized dendritic conductances, synaptic inputs 
can summate over longer periods, thereby 
degrading the ability of the cell to generate 
meaningful temporal patterns. The precise 
timing of synaptic inputs is therefore not re- 
ported in the resulting spike train, and only 
the rate of firing contains information. 

Considerable ex~erimental evidence 
suggests that rate codes can explain many 
'types of neuronal integration. Countless de- 
scriptions of receptive fields in sensory 
physiology, from the early classical studies 
to modem quantitative measurements, re- 
port the correlation between sensory stimuli 
and neuronal firing rates averaged over 
many trials. Similarly, motor output often 
correlates with firing rates. As such studies 
increase in complexity, however, a simple 
rate code may be rendered inadequate as a 
predictor of behavior. 

Evidence for tem~oral codes is more lim- 
ited, but is growing: (i) In frontal cortex, 
temporal patterns that are spread across two 
or three neurons recur with precisely de- 
fined interspike intervals and may be associ- 
ated with specific behavioral events (12, 
13). (ii) Although the average firing rates 
of groups of neurons in the auditory cortex 
encode only the onset and offset of long- 
lasting auditory stimuli, the degree of syn- 
chronization among groups of neurons (a 
temporal code) indicates the duration of 
the stimulus (1 4). In the visual system, syn- 
chronization among neurons responding to 
different image features may indicate that 
those features belong to the same object 

(15). A group of synchronously firing neu- 
rons would likely fire their postsynaptic 
targets more readily than a group of un- 
synchronized neurons. (iii) The synchro- 
nous firing of adjacent retinal ganglion cells 
defines a region closely approximating the 
overlap between their receptive fields (1 6). 
Thus, the retina may use a temporal code to 
build a more precise representation of a vi- 
sual image than could be encoded by the fir- 
ing rates of individual ganglion cells. (iv) In 
hippocampal place cells, the phase of action 

The language of the braln. In each case, the 
average firing rate of the action potentials is the 
same (100 Hz), but the temporal pattern differs, 
as shown in the three insets. Do these three 
patterns represent the same event in the neural 
code, or does the brain use information in the 
temporal patterns of action potentials to distin- 
guish among different events? 

potentials relative to the hippocampal theta 
rhvthm corres~onds to whether the animal 
is entering or leaving the cell's place field 
(17). Here the timing reference for a spike 
in one cell is not another spike in the same 
cell or in other cells, but the phase of an os- 
cillating field potential. Such oscillations 
may be generated by networks of intemeu- 
rons and provide an important "contextn for 
the firing of principal neurons (18). 
Hopfield (1 9) recently proposed a model for 
generating precisely such phase relations 
and suggested that neuronal networks could 
process phase-coded information more ef- 
fectively than the raw rate-coded informa- 
tion provided by sensory afferents. Note, 
however. that none of these tem~oral codes 
precludes a rate code being superimposed 
on it simultaneously. H.ippocampa1 place 
cells, for example, clearly signal ,by their 
rates whether the animal is within the place 
field, independently of whether the animal 
is entering or leaving that field (20). 

All of these results show the existence of 
unique temporal spike patterns in the brain. 
Proving that these patterns constitute a 
temporal code, however, is a daunting task. 
Shadlen and Newsome, for example, re- 
corded spike trains from direction-selective 
neurons in area MT of the monkey visual 
cortex while the monkey repeatedly viewed 
the same pattern of moving random dots 
(8). The temporal pattern of action poten- 
tials evoked by each presentation of the 
stimulus was complex, but similar from trial 
to mal. There is no evidence, however, that 
this is a temporal code reporting "what" sort 
of event has occurred, as opposed to "when" 
and "how strongn the variations in the di- 
rection signal were buried within the noisy 
stimulus. A rapid increase in spike rate asso- 
ciated with a change in the movement sig- 
nal occurring at the same point during each 
trial will, after all, reliably trigger a spike 
within a very small time window. A series 
of such events recorded within a single cell 
during presentation of a complex stimulus 
could mimic temporal codes, as could rapid 
changes in rate that occurred simulta- 
neously in several neurons. Clear proof for a 
temporal code would require that distinct 
stimuli could reliably produce different tem- 
poral spike pa t tee .  Shadlen et al. have 
searched for such unique patterns and failed 
to find them, but many investigators con- 
tinue to look for meaning in the temporal 
pattern of action ~otential firing. Whether 
or not they find it will profoundly influence 
our view of neuronal codes. 
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