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Geomorphically Driven Late Cenozoic Rock 
Uplift in the Sierra Nevada, California 

Eric E. Small* and Robert S. Anderson 

Geologists have long accepted that the Sierra Nevada, California, experienced significant 
late Cenozoic tectonically induced uplift. Aflexural-isostatic model presented here shows, 
however, that a large fraction of the primary evidence for uplift could be generated by the 
lithospheric response to coupled erosion of the Sierra Nevada and deposition in the 
adjacent Central Valley and therefore requires less tectonic forcing than previously be- 
lieved. The sum of range-wide erosion and the resultant isostatic rock uplift would have 
lowered Sierra mean elevation by 200 to 1000 meters since 10 million years ago and could 
also have increased summit elevations during the current period of relief production. 

F o r  a century, geologists have thought that 
the  Sierra Nevada (Sierra) crest (Fig. 1) has 
been uplifted about 2000 m by tectonic 
forces in the  late Cenozoic (1-3). This up- 
lift event is enigmatic because it occurred 
100 million years after arc-related crustal 
thickening in the Sierra (4) .  England and 
Molnar (5 )  proposed that much evidence 
used to infer mountain uplift, similar to that 
reported for the Sierra, may actually reflect 
either exhumation or isostatically driven 
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rock uplift rather than tectonically driven 
surface uplift. In  addition, they hypothe- 
sized (6) that much of the  data ilnterpreted 
as evidence for late Cenozoic uplift events 
could instead have been generated by global 
cooling, thereby challenging proposals that 
the reputed late Cenozoic uplift had caused 
global cooling (7). 

Surface uplift is the change in mean ele- 
vation with respect to the geoid averaged 
over > lo3 km2, rock uplift is displacement of 
individual points (rocks) with respect to the 
geoid, and exhumation is displacement of 
points with respect to the surface (5).  These 
terms are related: surface uplift equals rock 

uplift minus exhumation. Rock uplift can be 
d r ~ v e n  by tectonic forcing or by the isostatic 
response to exhumation. Before using any 
geologic data to constrain the amount of 
surface uplift attributable to tectonic forcing, 
one must first assess how much of this geo- 
logic signal was generated by exhumation 
and the resultant isostaticallv driven rock 
uplift. Here, we quantify what fraction of the 
evidence for late Cenozoic Sierra uplift was 
produced by these latter processes. 

T h e  primary evidence previously used to 
calculate the magnitude and timing of Si- 
erra uplift was the  westward tilt of markers 
(Fig. 2) (1-3), including stratigraphic hori- 
zons in the eastern Great Vallev sedimen- 
tary sequence and abandoned flivial chan- 
nels filled with dated volcanic flows and 
a l luv i~ tn  along the western Sierra margin. 
Most studies, as well as our own, have 
focused o n  unlift nor th  of 36. j0N because 
tilted markers do  not exist farther south 
(Fig. 1 ) .  In  previous studies, crestal uplift 
was calculated by simple linear projection 
of tilted markers to the  crest (Fig. 2).  Four 
assumptions were made in these s tud~es:  
( i )  t he  Slerran block rotated rigidly, ( i ~ )  
there was a constant hinge line position, 
(i i i)  all tilt exceeding modern stream gra- 
dients indicates deformation, and (iv) 
there was n o  erosion ( 2 ,  3 ) .  T h e  last as- 
sumption was not  explicitly stated. T h e  
tilt rate deduced from stratigraphic mark- 
ers more than  doubles 3 to  4 lnlllion vears 
ago (Ma) ;  this observation lead research- 
ers to  argue for accelerated uplift toward 
the  present (2 ) .  Huber (2)  calculated about 
2000 m of crestal uplift since 10  Ma,  with 
1000 m of this uplift occurring since 3 Ma. 
This  crestal uplift corresponds to  a 1000-m 
increase in  mean elevation (surface uplift) 
since 10 Ma  if all four of these assumptions 
are valid. Secondary evidence used to ar- 
gue for late Cenozoic uvlift comes from 
studies of paleobotany (8), sediment prov- 
enance (9), and the  depletion of deuterl- 
um in Great  Basin ground water (10). 

T h e  tilt of western Sierra geologic mark- 
ers unambieuouslv records differential rock 
uplift, with greater rock uplift occurring 
within the Sierra than in the  adjacent Cen-  
tral Valley. Rock uplift could have been 
driven by tectonic forcing or by the isostatic 
response to geomorphic forcing, or both. 
Tilt  observed a t  the western Sierra margin 
can be used to  quantify tectonically driven 
surface uplift of the  range only in the ab- 
sence of exhumation (5), that is, when 
surface uplift equals rock uplift. Previous 
researchers have implicitly assumed that tilt 
indicates differential surface uplift and, 
therefore, that it is both tectonic in origin " 

and has increased Sierra mean elevation. 
Several t ime-de~enden t  tectonic mecha- 
nisms have been proposed to e x p l a ~ n  the  
accelerating Increase 111 mean elevation 
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since 10 Ma ( I  I). Debate about these 
mechanisms continues (12, 13). We hy- 
pothesize that a large fraction of the west- 
ward tilt of markers, and therefore of the 
differential rock uplift this tilt represents, is 
instead the product of upward forcing from 
erosion to the east and downward forcing 
from deposition to the west of these mark- 
ers. This erosion and deposition (geomor- 
phic forcing), and the resultant flexural- 
isostatic response, would certainly have 
lowered the mean elevation and would pos- 
sibly have increased the maximum eleva- 
tion of the range. 

The same rock uplift that tilted markers 
could also have increased summit elevations. 
The elevation at any point will increase if 
erosion is slower than rock uplift, regardless 
of whether rock uplift is driven by erosion or 
tectonics. Lithospheric rigidity distributes 
the response to loading over a horizontal 
distance of 10 to 100 km; therefore, summit 
elevations will increase if upward litho- 

Fig. 1. Sierra Nevada to- 
pography from 30" digi- 
tal elevation model (DEM) 
data. The Sierra Nevada 
(SN) is separated from 
the Basin and Range (BR) 
province on the east by 
the Sierra Nevada fault 
system (SNF). The Cen- 
tral Valley (CV) bounds 
the Sierra on the west. 
Central Valley deposition 
does not constrain Sierra 
erosion because the val- 
ley has not been a closed 
basin continuously since 
10 Ma (37) and has re- 
ceived sediment from 
both the Sierra and the 
Coast Ranges to the 
west. Mean and maxi- 
mum elevations along a 
20-km-wide range-nor- 
mal swath (X-X'), from 
the San Andreas fault 
(SAFi into the Basin and 

spheric deflection from regional erosion (un- 
loading) exceeds lowering of peaks by local 
erosion. 

Many Sierra peaks appear to be eroding 
more slowly than the surrounding land- 
scape. If true, then peak elevations could be 
increasing as a result of regional erosional 
unloading. The Sierra crest is dotted with 
summit flats (Fig. 1) that display slopes 
<lo0 and show no evidence of erosion by 
the fluvial or glacial processes that have 
been active in the surrounding landscape. 
Instead, periglacial creep is the dominant 
geomorphic process (14). The erosion of 
flats appears to be limited by the slow rate 
(1 5) at which bedrock weathering produces 
material transportable by this creep. Ero- 
sionally driven rock uplift only increases 
peak elevations during intervals of relief 
production, that is, when summits erode 
more slowly than valleys. Although it ap- 
pears that Sierran relief is currently increas- 
ing because summits are capped by slowly 

122 120 11 8 

Longitude (degrees) 

kange, are shown in Fig. 3A. Tilted stratigraphic horizons and abandoned fluvial channels are common 
along the western Sierra margin north of 36.5". The asterisk r) denotes the 10-Ma San Joaquin River 
paleochannel. Summit flats are common at the Sierra crest (outlined area). 

Fig. 2. Schematic of both our hypothesis for the Erosional 
origin of tilt of Sierra geologic markers and the unloading 
method used by previous researchers to calculate 
uplift of the Sierra crest, after (2). The 10-Ma San marker 

Joaquin River paleochannel (gray line labeled 
"Tilted marker") is tilted 25 m/km, whereas the load~ng ,j:/];& uplift 
present stream gradient is 1 m/km through this -- 
area (thick dashed line) (2). Previous researchers X 

+100km- -- 
linearly projected markers to the crest of the range - Hinge Crest 
to calculate uplift (thin dashed line), assuming ro- X (West) X' (East) 
tation of a nearly horizontal line (thick dashed line). 
Upward forcing from erosion to the east and downward forcing from deposition to the west (large arrows) 
of markers located at the hinge line could produce the observed tilt. The resulting deformation pattern, 
w(x), is shown (solid line) for a case with reas onable flexural rigidity. 

eroding flats, no evidence suggests that flats 
and associated relief production have exist- 
ed since 10 Ma. Because the historv of relief 
production is unknown, we modeled the 
rate at which peak elevations are currently 
increasing as a result of erosional unloading. 

We explored what fraction of the mea- 
sured tilt of 10-million-year-old geologic 
markers could be due to the lithospheric 
response to geomorphic forcing. Any re- 
maining tilt requires tectonic forcing. In our 
calculations, we used a one-dimensional 
flexural-isostatic model similar to that used 
in many recent studies (16), with loading 
constrained by measured Central Valley dep- 
osition and less well known magnitudes and 
patterns of Sierra erosion. Because the mag- 
nitude and timing of tilt is similar along the 
axis of the Sierra north of 36S0N (3). we . . .  
compared our calculated tilt to the measured 
tilt of a 10-million-year-old lava-filled San 
Joaquin River paleochannel(2) (Fig. 1). We 
also tracked changes in mean and maximum 
elevation along a model swath, <z>(x) and 
z,,,,(x), and changes in mean elevation over 
the entire model swath, <z>SN (17). Be- 
cause only changes in elevation were mod- 
eled, our results are independent of both 
present and past topography. 

The geomorphic forcing in our model 
has four components, of which we varied 
the latter three (Fig. 3): (i) Central Valley 
deposition, (ii) mean erosion rate, < E > ~ ~ ,  
within our model swath, (iii) pattern of 
mean erosion rates along the swath, 
<E>(x), and (iv) summit flat erosion rate, 
E,. Central Valley well data were used to 
determine sediment thickness above an 
8-million-year-old marker horizon (Fig. 3A) 
( 18). We then converted this sediment . , 

thickness to a 10-million-year depositional 
load by assuming no deposition between 8 
and 10 Ma (yielding a minimum estimate of 
loading during this period and, hence, a 
minimum estimate of related tilt), and by 
converting sediment thickness to rock mass 
using porosity-depth relations (Fig. 3B) 
(1 9). Apatite fission track studies indicate 
that < E > ~ ~  over the past 15 to 30 million 
years has been 0.07 to 0.20 mm (20). 
Estimates of erosion rates from sediment 
mass balance and geobarometry studies in 
the Sierra, and from a global denudation- 
relief relation, support this range of values 
over time scales from 100 to 100 million 
years (21 ). We varied <E>,, beyond the 
range suggested by these studies to illustrate 
fullv the relation between tilt and erosional 
unloading. The crossing of modem and pa- 
leochannels indicates minor mean erosion 
at the western Sierra margin. Because no 
other constraints on the range-normal pat- 
tern of mean erosion rates exist. a boxcar 
erosional load that tapers to zero at the 
western range margin was used (Fig. 3B). 
We examined the sensitivity of our results 
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to three other mean erosion rate patterns 
(Fig. 3B). Sierra summit flats and ridgetops 
across the range are not datums that con- 
strain either the magnitude or pattern of 
mean erosion since 10 Ma because their age 
and erosional history are unknown. The 
10-Ma elevations at current summit flat and 
ridgetop locations could have been above or 

Distance east of SAF (km) 

Fig. 3. (A) Mean (thick line) and maximum eleva- 
tion (thin line) along swath X-X' (in Fig. 1) from 3" 
DEM data. The dashed line is the depth of an 
8-million-year-old marker horizon in the Central 
Valley (18). (B) Thickness of positive depositional 
load in the Central Valley and of the tapered box- 
car erosional load in the Sierra, with density p, = 

2700 kg/m3 (thick line) (32). All three other erosion 
patterns examined (thin lines) and the tapered 
boxcar have equal mean erosion rates, <E>,, = 
0.07 mm yearrl for 10 million years. Where sum- 
mit flats exist along the swath, local erosion lowers 
peaks by 0.01 mm year-l, or a total of 30 m if flats 
have persisted since 3 Ma (dashed line). (C) De- 
flection from tapered boxcar and Central Valley 
loading in (B) for a continuous (solid line) and bro- 
ken lithosphere (dashed line) of Te = 30 km. The 
density contrast between crust and mantle is 
-500 kg/m3 (we assume a mantle density p, of 
3200 kg/m3). The discontinuity is the break at the 
Sierra Nevada fault. (D) Changes in mean eleva- 
tion (<z>) for continuous (solid) and broken 
(dashed) lithosphere as a result of the sum of 
tapered boxcar erosion in (B) and the lithospheric 
response to this loading in (C). The sharp trough in 
mean elevation change (at 160 km) is caused by 
the corner in the tapered boxcar erosion pattern. 
Changes in maximum elevation (z,,) are due to 
the sum of summit flat erosion in (B) and deflection 
from the boxcar load in (C), for summit flats that 
have persisted since 3 Ma. 

below the general paleotopography at that 
time, depending both on the pattern and 
magnitude of mean erosion, and on the 
total erosion from present summit flat and 
ridgetop locations since 10 Ma. As the ero- 
sion of summit flats appears to be weather- 
ing-limited (14), we assumed that E, is 0.01 
mm the bare granite weathering rate 
measured with cosmogenic radionuclides 10 
km east of the Sierra crest (15). 

We modeled the lithospheric response 
to this geomorphic forcing as that of a thin, 
uniformly rigid elastic plate overlying a vis- 
cous substrate (22). The effective elastic . , 

thickness, T,, and the lateral boundary con- 
ditions control the lithospheric response to 
distributed loads. Flexural subsidence mod- 
eling indicates that T, in the southern Cen- 
tral Valley has been about 20 km over the 
past 10 million years (18, 23). We exam- 
ined the sensitivity of our results to a range 
of T,'s bracketing this value and also per- 
formed all model runs with the lithos~here 
both broken and continuous across the Si- 
erra Nevada fault (SNF), representing end- 
member calculations for how vertical shear 
and fiber stresses are transmitted across this 
edge of the Basin and Range province (24). 

The tilt and elevation changes were cal- 
culated bv summine erosion and litho- 

L, 

spheric deflection, w, at every position 
alone the model swath, x (Fie. 3). Tilted - . . - .  
markers exist only where there has been no 
erosion since the marker was emplaced. Be- 
cause markers are not eroded, changes in 
their elevation are due solely to the total 
local deflection since they were emplaced 
10 Ma. It follows that the tilt of a marker is 

equal to the local gradient in deflection, 
dwldx. Markers at the western Sierra margin 
are tilted UD to the east because the deflec- 
tion gradient is positive in that direction 
(Fig. 3C). The change in mean elevation at 
any section along our swath is the sum of the 
total mean erosion [the product of <E>(x) 
with an elapsed time, t, of 10 million 
and the total deflection since 10 Ma at that 
x position [A<z>(x) = < ~ > ( x ) t  + w(x)] 
(Fig. 3D). Because eroded crust is less dense 
than the underlying mantle asthenosphere, 
the combined effects of mean erosion and 
deflection lower the mean elevation of the 
entire swath, < z > ~ ~ .  Along the Sierra crest 
where slowly eroding summit flats exist, the 
rate of change of maximum elevations is the 
sum of the local erosion rate, E,, and the 
deflection rate [total deflection divided by 
the elapsed time (10 million  ears)] at the 
crest [dq,,,,(crest)/dt = E, + w(crest)/t] (Fig. 
3D). Upward deflection from regional un- 
loading is greater than the lowering of sum- 
mit flats by local erosion, resulting in in- 
creases in maximum elevation (Fig. 3D). 

Our results show that a large percentage 
of the observed tilt of 10-Ma geologic mark- 
ers can be generated solely by geomorphic 
forcing and the resulting lithospheric re- 
sponse (Fig. 4A). For the expected range of 
<E>, and T, (gray boxes in Fig. 4), the 
amount of tilt ~roduced by geomorphic 
forcine varies from 40 to 140% of that 
observLd. This result suggests that tectonic 
forcing produced <60%, and perhaps none, 
of the differential rock uplift recorded by 
tilted markers. Previous estimates of the 
amount of tectonic rock uplift therefore 

a 
Elastic thickness, T, (krn) 

Fig. 4. (A) Lines of equal calculated tilt at the western Sierra margin, shown as a percent of 0bse~ed tilt 
(2), due to geomorphic forcing (tapered boxcar) and lithospheric response over 10 million years, as a 
function of <E>,, and T,. Continuous lithosphere calculations are shown with solid lines, broken 
lithosphere with dashed lines [same in (B) and (C)]. Avalue of 100% indicates that the calculated tilt equals 
the observed tilt of the 10-Ma San Joaquin River channel. Values less than 100% indicate that the 
calculated tilt is less than the observed tilt. The shaded rectangle represents the most likely values of 
<.eSN and T, for the Sierra since 10 Ma [same in (B) and (C)] (18, 20, 21). When <E>,, = 0.0, tilt is 
driven solely by Central Valley deposition. (B) Lines of equal calculated mean elevation change (in meters), 
<z>,,, from the sum of modeled erosion and associated rock uplift over 10 million years, as a function 
of <E>,, and Te. Note that all values are negative, indicating that geomorphic forcing would lower the 
mean elevation since 10 Ma. (C) Lines of equal rate of change of maximum elevation (meters per million 
years) for peaks with slowly eroding summit flats (for <E>, = 0.01 mm year-l). All values are positive. For 
every increase of 0.01 mm year-' in < E > ~ ,  the rate of peak elevation change decreases by 10 m per 
million years for any combination of < E > ~ ,  and T,. 
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appear to be too high (1-3). Even in the 
extreme minimum case of no Sierra erosion 
sirice 10 Ma (<E>,, = 0.0 mm year-'), the 
well-documented Central Valley deposition 
alone would still have generated about 25% 
of observed tilt (Fig. 4A). Modeled tilt at 
the western Sierra margin is similar for both " 

continuous and broken lithosphere cases 
because markers recording tilt are far 
enough awav from the SNF that the bound- 
ary coonditidn applied there does not alter 
the local deflection pattern (Fig. 3C). Poor 
constraints on the mean erosion pattern do 
not detract from our conclusions because 
modeled tilt is insensitive to the details of 
this pattern, especially when Tc 2 25 km. 
Results in Fig. 4 were generated with the 
tapered boxcar pattern (Fig. 3B), which 
either produces a minimum estimate of tilt 
or is within 5% of the minimum, from 
among the four erosion rate patterns exam- 
ined for all reasonable <&>,, and T, (25). 

Concomitant with tilting generated by 
geolnorphic forcing is a 200- to 1000-m 
decrease in mean elevation of the entire 
model swath, <?>,,, depending on 
<E>,,, T,, and the lateral lithospheric 
boundarv conditions (Fig. 4B). The mod- , "  , 

eled mean elevation decrease is less for a 
broken lithosphere because this boundary 
condition promotes a more local, rather 
than reg~onal, isostatic response to erosion 
near the SNF and, hence, results in more 
rock uplift within the range. The total 
change in Sierra mean elevation since 10 
Ma is the sum of elevation changes from 
geoinorphic and tectonic processes. There- 
fore, Sierran mean elevation should have 
decreased over the past 10 million years 
unless tectonic forcing, for which there is 
no evidence besides tilted markers. offset 
the hundreds of meters of loweringrdue to 
erosion and associated isostatic rock u~llf t .  
We hypothesize that the tectonic event 
responsible for the present high mean ele- 
vation of the Sierra Nevada preceded 10 
Ma; the mean elevation may well have 
declined monotonicallv since the late Me- 
sozoic shutdown of the' magmatic arc. 

Winograd et al. (10) suggested that pro- 
gressive depletion of deuterium in Great Ba- 
sin ground water since 3 Ma is evidence for 
a growing rain shadow associated with a 
several hundred meter rise in the Sierra crest. 
Our modeling suggests that the elevations of 
Sierra peaks capped by slowly eroding flats 
are currently increasing by 30 to 200 m per 
million years because of geomorphic forcing 
and associated isostatic flexure (Fig. 4C). 
Unlike our tilt calculations, the modeled 
rate of ~ e a k  elevation increase is less well 
constrained because it is sensitive to all input 
variables, in particular the lithospheric 
boundary condition at the SNF (26). For the 
continuous lithosphere case, which provides 
a minimum estimate of peak elevation in- 

crease, summit elevations would still have 
risen 100 to 500 m since 3 Ma (27) if the , , 

current rate of relief production persisted 
throughout this interval. It therefore seems 
plausible that geomorphically driven uplift of 
the Sierra crest could have produced the 
intensified oroera~hic effect inferred from - & 

Great Basin ground water studies (10). 
If geomorphic forcing is responsible for a 

large fraction of the observed tilt since 10 
Ma, then accelerated tilt recorded by mark- 
ers could be due to increased erosion rates 
rather than intensified tectonic forcing (2). 
The increase in Sierra tilt rate about 3 Ma 
IS roughly coeval with the global cooling 
event responsible for Northern Hemisphere 
continental ice sheet growth (28). It seems 
likely that the onset of Sierra alpine glaci- 
ation also occurred about 3 Ma. This onset 
would have enhanced the rates of erosional 
unloading of the range and associated dep- 
ositional loading of the Central Valley, pro- 
ducine the accelerated tilt rates recorded bv " 
markers. If this scenario is correct, then our 
results support Molnar and England's (6)  
notion that evidence being used to infer 
tectonic uplift may instead be an effect of, 
and hence evidence for, global cooling. 
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