
dehydratase enzymes, this seems borne out 
in a convincing manner. The enzymatic syn 
addition-elimination of water with thio- 
ester substrates is not the most chemically 
efficient pathway but appears to depend 
instead on historical contingency. 
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Interaction of Papillomavirus E6 Oncoproteins 
with a Putative Calcium-Binding Protein 

Jason J. Chen, Carl E. Reid, Vimla Band, Elliot J. Androphy* 

Human papillomaviruses (HPVs) are associated with the majority of cervical cancers and 
encode a transforming protein, E6, that interacts with the tumor suppressor protein p53. 
Because E6 has p53-independent transforming activity, the yeast two-hybrid system was 
used to search for other E6-binding proteins. One such protein, EGBP, interacted with 
cancer-associated HPV E6 and with bovine papillomavirus type 1 (BPV-1) E6. The trans- 
forming activity of BPV-1 E6 mutants correlated with their E6BP-binding ability. E6BP is 
identical to a putative calcium-binding protein, ERC-55, that appears to be localized in 
the endoplasmic reticulum. 

Infection with "high-risk" HPV, such as 
types 16, 18, and 31, can lead to malignancy, 
the most common of which is cervical can- 
cer. Two viral transforming genes, E6 and 
E7, are selecti\rely retained and expressed in 
these cancers. Other HPVs such as types 6 
and 11 are referred to as "low-risk" viruses 
because these are generally limited to benign 
genital and cervical papillomas that rarely 
progress to cancer. The high-risk HPV E6 
genes induce im~nortalization of primary hu- 
man epithelial cells either alone or in coop- 
eration with E7 [reviewed in (1 )]. High-risk 
HPV E6 proteins bind the cellular factor 
E6-AP in vitro, and together these proteins 
bind and promote the ubiquitination and 
degradation of p53 (2, 3). In cultured cells 
the introduction of HPV-16 E6 leads to 
increased p53 turnover (4, 5), inhibits p53- 
regulated transcription (6, 7), and blocks 
p53-induced G I  growth arrest (4, 8). 

J. J. Chen and C. E. Reld, Department of Dermatology, 

Several observations suggest that papil- 
lomavirus E6 genes encode p53-indepen- 
dent transformation f~~nctions. HPV- 16 E6 
transforms NIH 3T3 cells but trans-domi- 
nant p53 mutants did not (9). We have 
fou~ld that HPV-16 E6 induces anchorage- 
independent growth of p53-deficient cells 
(10). The E6 genes from HPV-5 and HPV- 
8, BPV-1, and cottontail rabbit PV have 
oncogenic properties, yet these E6 proteins 
do not interact with p53 ( 1  1 ). To identify 
additional cellular proteins that interact 
with HPV-16 E6, we screened (12)  a HeLa 
cell comple~nentary DNA (cDNA) library 
( 1  3) using the yeast two-hybrid system (14). 
After screening - 10%olonies on X-Gal 
plates, we isolated a HeLa cDNA encoding 
a protein referred to as E6BP (E6-binding 
protein) that specifically interacts with 
HPV-16 E6 (12). 

Sequence analysis of the E6BP cDNA 
revealed a 210-amino acid open reading 
frame encoding a protein with four poten- 
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- 
GST 

11 E6 a Fig. 1. In vitro association of 

HPV and BW-1 E6 proteins 

18 E6'LL; 3 w~th E6BP. GST-E6BP was 
constructed by llgatlnq 
E6BP cDNA into p ~ U ( - 3 ~  

31 ~6 y L  7 (Pharmacia). Glutathione- 
Sepharose beads contain- 

ing 2 wg of GST or GST fusion proteins were 
mixed with ""S-labeled, in vitro-translated HW- 
16 €6 in LSAB [I 00 mM NaCI, 100 mM tris-HCI 
(pH 8.0), 1% NP-40, 2 mM dithiothreitol (Dm,  
0.1 % nonfat dry milk, and 1 mM phenylmethylsul- 
fonyl fluoride (PMSF)] in a total volume of 250 PI. 
After incubation for 3 hours at 4°C and washes 
with LSAB, the bound products were separated 
by SDS-polyacrylamide gel electrophoresis. E6 
binding was analyzed by autoradiography (A) or 
Molecular Imager (Bio-Rad) (B and C). (A) Binding 
of E6BP to HPV-16 E6. (B) Binding of E6BP to €6 
from high-risk HPVs. (C) Association of E6BP with 
BPV-1 E6. The BW-1 E6 mutations are indicated 
above each lane. Input was directly loaded into 
the well and represents 10% of the "5S-labeled E6 
used in each binding reaction. WT, wild type. 

ERC-55 that is missing the NH2-terminal 
107 amino acids. 

To study the interaction of E6 with 
E6BP, we prepared glutathione-S-trans- 
ferase (GST)-E6BP fusion proteins in Esch- 
erichia coli. GST-E6BP efficiently bound 
HPV-16 E6 (Fig. 1 A), whereas the control 
GST, an irrelevant GST fusion protein, and 
calmodulin agarose did not bind. We next 
investigated the ability of E6 from other 
genital HPVs to bind E6BP. GST-E6-AP 
and GST-E6-APA [a mutant devoid of 
amino acids 39 1 to 408, which are necessary 
for E6 association (3)] were used as positive 
and negative controls. GST-E6BP and 
GST-E6-AP bound HPV-16 E6 equally 
well (Fig. 1B). GST-E6BP and GST-E6-AP 
bound to HPV-18 and HPV-31 E6, al- 
though binding of HPV-18 E6 was weaker 
with E6BP. GST-E6 fusion proteins dis- 
played a similar hierarchy of binding affin- 
ities (HPV-16 > HPV-31 > HPV-18) in 
p53 binding assays (6). E6 from low-risk 
HPV-6 and HPV-11 did not bind GST- 
E6BP or GST-E6-AP. Thus, there is a cor- 
relation between biological risk for cervical 
cancer and the ability to bind E6BP. 

Mutational analyses of HPV-16 E6 that 
compare its interactions with E6-AP and 

Fig. 2. lnteiaction of E6BP with HW-16 E6 and 
E6-AP. Glutathione-Sepharose beads containing 
2 pg of GST or GST fusion proteins were mixed 
with 35S-labeled, in vitro-translated HW-16 E6, 
the 95-kD form of E6-AP (3), or both, in LSAB as in 
Fig. 1. Lanes 1 (GST) and 2 (GST-EGBP), incuba- 
tion with 35S-labeled E6-AP; and lanes 3 (GST) 
and 4 (GST-EGBP), incubation with both 35S-la- 
beled HPV-16 E6 and E6-AP. Lanes 5 and 6 were 
loaded with 10% of the 35S-labeled HW-16 E6 
and E6-AP used in each reaction. Numbers indi- 
cate the molecular size in kilodaltons. E6-AP and 
HPV-16 E6 are indicated by the upper and lower 
arrows, respectively. 

p53 to its transformation and immortaliza- 
tion capability have not been reported. We 
therefore investigated binding of E6BP to 
the related BPV-1 E6 transforming protein. 
GST-E6BP formed a complex with in vitro- 
synthesized BPV-1 E6 as efficiently as it did 
with HPV-16 E6 (Fig. 1C). The transform- 
ing activity of a series of BPV-1 E6 mutants 
(17) correlated with their ability to bind 
E6BP in vitro (Fig. 1C and Table 1). Mu- 
tants 212 and 473 transformed C127 cells at 
wild-type levels and were competent for 
E6BP binding, whereas mutants defective for 
transformation did not bind GST-E6BP. No- 
tably, mutant 228 maintained partial trans- 
forming activity and displayed reduced E6BP 
binding. These results suggest that the E6BP 
interaction is necessary for BPV-1 E6-in- 
duced transformation. Although BPV-1 E6 
does not bind (2, 18) or degrade p53 in vitro 
(19), it efficiently bound E6-AP but not 
E6-APA. This indicates that binding to E6- 
AP is not in itself sufficient for interaction 
with p53 and that the 18 amino acids delet- 
ed in E6-APA are necessary for association 
with both HPV-16 and BPV-1 E6 proteins. 
The general correlation between BPV-1 E6 
transformation and E6-AP binding suggests 
that this interaction may also play a role in 
BPV-1 E6 transformation. 

In vitro association of HPV-16 E6 with 
p53 requires E6-AP (3). In contrast, HPV- 
16 E6 bound E6BP in the absence of E6-AP 

Fig. 3. lmmunoprecipitation of E6BP from cul- 
tured cells. Methods are described in (29). The 
E6BP-specific antiserum was raised against the 
GST-E6BP fusion protein. (A) Immunoprecipita- 
tion of E6BP from HeLa cells. Lane 1, preimmune 
serum; lanes 2 to 4, E6BP antiserum. Purified GST 
and GST-E6BP proteins (200 ng) were added to 
the immunoprecipitation reactions in lanes 3 and 
4, respectively. (B) Analysis of endogenous E6BP 
from primary (76N) and H W-16 E6immortalized 
(16 E6) human mammary epithelial cells (20). 
Lanes 1 and 3, preimmune serum; lanes 2 and 4, 
E6BP antiserum. The position of E6BP is indicat- 
ed by the arrow. Numbers indicate the molecular 
size in kilodaltons. 

(19). Although GST-E6BP did not directly 
bind E6-AP, addition of HPV-16 E6 al- 
lowed coprecipitation of E6-AP (Fig. 2). 
Thus, HPV-16 E6, E6-AP, and E6BP can 
simultaneously be present in a complex, 
implying that the region of E6 that binds 
E6-AP is distinguishable from the E6BP 
interaction domain. Although HPV-16 E6 
and E6-AP assemble with GST-E6BP, we 
have not been able to demonstrate entry of 
p53 into this complex. 

Rabbit polyclonal antiserum against 
GST-E6BP immunoprecipitated a 50-kD 
protein from HeLa cells (Fig. 3A), which is 
probably identical to the 55-kD product 
ERC-55 (16). In primary human keratino- 
cytes, the target cell of HPVs, and in hu- 
man mammary epithelial cells that are sus- 
ceptible to HPV and BPV-1 E6 immortal- 
ization (ZO), the antiserum recognized 50- 
and 48-kD proteins. The amount of the 
E6BP was similar in normal and immortal- 
ized cells (Fig. 3B). The antiserum immu- 
noprecipitated proteins of similar molecular 
mass from murine cell lines, and the 
amount of E6BP in BPV-1 E6-transformed 
cells did not differ from that in the parental 
C127 cell line (19). Although these data 
imply that HPV-16 and BPV-1 E6 do not 
induce E6BP degradation, it remains possi- 
ble that this occurs under specific condi- 
tions. It is also possible that E6BP attracts 
and stimulates degradation of other cellular 
proteins by mediating their entry into the 
E6 -E6-AP-E6BP complex. 

HPV-16 E6 protein has not been iden- 
tified in complex with E6-AP and p53 in 
vivo, and similar experiments with E6BP 
have been unsuccessful. This is probably 
due to the low amount of E6 in a trans- 
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Table 1. Binding of E6BP to BPV-I E6 mutants. E6BP binding and E6-AP binding are expressed as 
percent of wild-type BPV-I E6, after subtraction of the background binding of each E6 mutant to GST or 
GST-E6-APA. Data represent two to four independent experiments. 

E6 Amino acid Number Growth E6BP E6-AP 
mutant change Class* of foci? in agart binding binding 

Wild type 
212 
473 
228 

238 
139 
149 
247 
359 
367 
368 
403 
438 
460 
47 1 
49 1 

lle4' 4 T h r  
CyslZ8 + Ser 
Arg4" + Ser 
Tyr47 4 His 
CysSO 4 Gly 
Cysi7 +Pro 
Cys20 4 Ser 
CysS3 + Arg 
CysQO + Ser 
Cys" 3 HIS 
CysQ3 + Ser 
HisTo5 4 Asp 
Argl '" + Ser 
Cysl" 3 Val 
CysW7 +Stop 
Ser134 4 Stop 

*N, nonconsetved amno acld mutations; Zn, znc flnger mutatons; C, conserved amlno acid mutations not In the zinc 
flnger, P, premature termlnaton. :Transformaton data are from (1 7j 

formed cell. By immunoelectron microsco- 
py, ERC-55 was localized to the ER (16). By 
cell fractionation, both BPV-1 and HPV E6 
proteins were distributed in nuclear and 
membranous compartments (21, 22), the 
latter fraction consistent with their pres- 
ence in the ER. Immunofl~~orescence stud- 
ies with the monoclonal antibody ClP5 ,  
which is specific for both HPV-16 and 
HPV-18 E6, localized E6 to the cytoplasm 
(23). In preliminary experiments with 
C1P5 and affinity-purified rabbit antisera to 
E6BP, we observed colocalization with 
granular cytoplasmic fluorescence and pe- 
rinuclear accentuation in HPV-16 E6-ex- 
pressing Caski cervical carcinoma cells and 
HPV-16-immortalized mammary epithelial 
cells (19). A monoclonal antibody to the 
ER protein BiP produced an identical pat- 
tern. These results suggest that the associa- 
tion between E6 and E6BP is physiological- 
ly relevant. 

The interaction between papillolnavirus 
E6 and E6BP provides several leads for in- 
vestigation. Calcium ions and calcium-bind- 
ing proteins are involved in signaling cell 
growth and cell differentiation. Through in- 
teraction with E6BP, E6 may inhibit termi- 
nal differentiation of epithelial cells, estab- 
lishing the necessary environment for viral 
DNA replication. E6 dramatically alters dif- 
ferentiation of keratinocytes (24), and kera- 
tinocytes immortalized by HPV-16 E6 and 
E7 are resistant to calcium-induced differen- 

these vroteins bind to a vutative calcium- 
binding protein that is localized to the nu- 
clear envelope and ER (27). The E6-E6BP 
association may similarly prevent apoptosis 
of HPV-infected cells. Characterization of 
the E6-E6BP interaction should provide bet- 
ter understanding of p53-independent E6 
activities. 
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