
This nieans that the necessary extrapolation 
of the known lower rotational] transitions to 
the unknown higher J tra~lsitions will fiail 
with the traditional perturbation Harniltoni- 
an. Some progress can be made if the diver- 
gent series is resumed with the use of Pad6 
approxirnants (22) and other more sophisti- 
cated schemes (23). T h e  assignnient of the 
hot water vapor spectrum is therefore a dif- 
ficult task (24). T h e  water spectrum is of 
fi~ndamental importance and presents such a 
theoretical challenge that new techniques 
(18, 25) for the calculation of spectra are 
often tested with it 
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The "Wake-Sleep" Algorithm for 
Unsupervised Neural Networks 

Geoffrey E. Hinton,* Peter Dayan, Brendan J. Frey, 
Radford M. Neal 

An unsupervised learning algorithm for a multilayer network of stochastic neurons is 
described. Bottom-up "recognition" connections convert the input into representations 
in successive hidden layers, and top-down "generative" connections reconstruct the 
representation in one layer from the representation in the layer above. In the "wake" 
phase, neurons are driven by recognition connections, and generative connections are 
adapted to increase the probability that they would reconstruct the correct activity vector 
in the layer below. In the "sleep" phase, neurons are driven by generative connections, 
and recognition connections are adapted to increase the probability that they would 
produce the correct activity vector in the layer above. 

Supervised learning algorithms for multi- 
layer neural networks face two problems: 
They require a teacher to specify the desired 
output of the  network, and they require 
some method of cornrnunicating error infor- 
mation to all of the  connections. T h e  wake- 
sleep algorithm avoids both of these prob- 
lerns. W h e n  there is n o  external teaching 
signal to be matched, some other goal is 
required to force the hidden units to  extract 
underlying structure. In  the wake-sleep al- 
gorithm, the  goal is to learn representations 
that are econoniical to describe but allow 
the  input to he reconstructed accurately. 
W e  can quantify this goal by imagining a 
coln~nunication game in  which each vector 
of raw sensory inputs is communicated to  a 
receiver bv first sendi~ig its hidden revre- 
sentation and then senzing the differeke 
hetween the  input vector and its top-down 
reconstruction from the  hidden reoresenta- 
tion. T h e  airn of learning is to minimize the 
"descrivtion length." which is the  total " 

nulnher of bits that would be required to 
colnmunicate the  input vectors in  this way 
( 1 ) .  No communication actuallv takes , , 

place, hut minimizing the  description 
length that would be required forces the 
network to learn economical representa- 
tions that capture the underlying regulari- 
ties in  the data 12). , , 

T h e  neural net~vork has two quite differ- 
ent  sets of connections. T h e  bottom-up 
"recognition" connections are used to con- 
vert the  input vector into a representation 
in one or more layers of hidden units. T h e  
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top-down "generative" connections are 
then used to reconstruct an  approximation 
of the  input vector from its underlying rep- 
resentation. T h e  training algorithm for 
these two sets of connections can he used 
with many different types of stochastic neu- 
rons, but for simplicity, we use only stochas- 
tic binary units that have states of 1 or 0. 
T h e  state of unit 2: is s,,, and the prohability 
that it is o n  is 

" (1)  

where b, is the  bias of the  unit  and wtL, is 
the  weight o n  a connection from unit  u. 
Sometinies the  units are driven hy the  
generative weights, and a t  o ther  tinies 
they are driven by the  recognition 
weights, hut the  same equation is used in  
both  cases (Fig. 1 ) .  

, ' 7 ,  

In  the "wake" phase, the units are driven 
bottom-up with the recognition weights; this 
produces a representation of the input vector 
in the first hidden layer, a representation of 
this reoresentation in the second hidden lav- 
er, and so on. All of these layers of represen- 
tation conibined are called the "total repre- 
sentation" of the input, and the binary state 
of each hidden unit j in the total represen- 
tation a: is s". This total reoresentation could 
be used to iommunicate the input vector d 
to a receiver. According to Shannon's cod- 
ing theorem, it requires l o g  r hits to com- 
municate an  event that has probability r 
under a distribution agreed upon by the 
sender and receiver. W e  assume that the 
receiver knows the top-down generative 
weights ( 3 ) ,  so that these can be used to 
create the agreed probability distributions 
required for communication. First, the activ- 



ity of each unit k in the top hidden layer is 
comlnunicated using the distribution (p;, 1 
- pi), which is obtained by applying Eq. 1 to 
the single generative bias weight of unit k. 
Then  the activities of the units in each lolver 
layer are communicated using the distribu- 
t o  ( 1 - 15") obtained by applying Eq. 1 
to the already communicated activities in 
the layer above, s r ,  and to the generative 
weights, wki. T h e  description length of the 
binary state of unit j is 

C(sY) = -s;10gp," - (1 - sP)log(l - p;) 

(2) 
T h e  description length for input vector d 
using the total representation a: is sinlply the 
cost of describing all the hidden states in all 
the hidden layers plus the cost of describing 
the input vector given the hidden states 

where C is a n  index over the  L layers of 
hidden  nits and i is a n  index over the  
input units that have states st. 

Because the hidden units are stochastic, 
a n  input vector will not always be represent- 
ed in the  same way. In  the wake phase, the 
recognition weights determine a cond i t io~~a l  
probability distribution a(. 1 d) over total 
representations. Nevertheless, if the recogni- 
tion weights are fixed, there is a very simple, 
on-line method of modifying the  genera- 
tive ~veights to minimize the  expected cost 
CaQ(a 1 d)C(a,d) of describing the  input 
vector with a stochastically chosen total 
representation. After the recognition 
weights are used to choose a total represen- 
tation, each generative weight is adjusted in 
proportion to the derivative of Eq. 3 by use 
of the purely local delta rule 

~vhere  E is a learning rate. Although the 
units are driven by the recognition weights, 
it is only the  generative weights that learn 
in the wake phase. T h e  learning makes each 
layer of the  total representation better at 
reconstructing the  activities in the  layer 
below. 

It seems obvious that the  recognition 
weights should be adjusted to maximize the  
probability of picking the a: that rnininlizes 
C(a:,d). But this is incorrect. W h e n  there 
are many alternative ways of describing a n  
input vector, it is possible to design a sto- 
chastic coding scheme that takes advantage 
of the  entropy across alternative descrip- 
tions ( I  ). T h e  cost is then 

C(d) = C ~ ( a l d ) ~ ( a , d )  
o! 

- [ - I ~ ) I ( ~ ~ Q ( ~  d l  ] (5) 

Layer 

,Q fi r ,  K 

Generative , , , 

p, ,,', ;,,', , 

9y : 
Recognition / - \ - - . - ,  -,- 

Fig. 1. A three-layer Helmholtz machine. The bot- 
tom layer represents the raw sensory inputs. Units 
in layers I ,  J ,  and K are completely interconnected 
with recognition (solid lines) and generative (dot- 
ted lines) connections. The binary activity of unit j 
in layer J is s,. The quantity q, is determined by the 
recognition weights, and p, is determined by the 
generative weights. When the units are driven bot- 
tom-up, the probability that s, = 1 is q,; when they 
are driven top-down, the probability is p,. 

T h e  second term o n  the right is the entropy 
of the distribution that the recognition 
weights assign to the various alternative rep- 
resentations. If, for example, there are two 
alternative representations, each of which 
costs 4 bits. the combined cost is onlv 3 bits 
provided Ive use the two alternatives with 
eq~ral probability (4). It is precisely analo- 
gous to the way in which the energies of the 
alternative states of a physical system are 
colnbined to yield the Helmholtz free energy 
of the system. As in physics, C(d) is mini- 
mized when the probabilities of the altema- 
tives are exponentially related to their costs 
by the Boltzrnann distribution (at  a temper- 
ature of 1)  

So, rather than adjusting the recognition 
weights to focus all of the probability on the 
lowest cost representation, we should try to 
make the recognition distribution Q(. 1 d) as 
similar as possible to the Boltzmann dis- 
tribution P(. 1 d), which is the posterior dis- 
tribution over representations given the data 
and given the network's generative model. It 
is ex;onentially expensive to compute P(. I d) 
exactly (5), but there is a sinlple way of 
getting approximately correct target states 
for the hidden units in order to train the 
distribution Q(. 1 d) produced by the bottom- 
up recognition ~veights. 

W e  tun1 off the recognition weights and 
drive all of the units in the network with the 
generative weights, starting at the toprnost 
hidden layer and working down all the way 
to the innut units. Because the units are 
stochastic, repeating this process typically 
nroduces manv different "fantasv" vectors o n  
;he input uniis. These fantasies provide an  
unbiased sample of the network's generative 

nlodel of the world H a v ~ n g  produced a fan- 
tasy, we then adjust the recognltlon welghta 
to lnaxlnlize the logarlthrn of the probablllty 
of recovering the hidden activities that ac- 
tually caused the fantasv 

~vhere  Y soecifies the states of both the  , . 
hidden units and the input units for a par- 
ticular fantasy and q l  is the  probability that 
unit k ~vould be turned o n  by the  recogni- 
tion weights operating o n  the  binary activ- 
ities s/ in the  layer below (6). W e  call this 
the "sleep" phase of the  algorithm. Like the  
wake it uses only locally available 
information. A votential drawback of the  
sleep phase is that we would like the  recog- 
nition weights to be good at recovering the  
true causes for the training data but the  
sleep phase optimizes the  recognition 
weiehts for fantasv data. Earlv in the learn- 
ing: fantasies wifi have a iu i t e  different 
distribution than the training data. 

T h e  distribution Q(. I d) produced by the 
recognition weights is a factorial distribution 
in each hidden laver because the recognition 
weights produce stochastic states of units 
within a hidden layer that are conditionally 
independent, given the states in the layer 
below. It is natural to use factorial distribu- 
tions in a neural net because it allows the 
probability distribution over the 2" altema- 
tive hidden representations to be specified 
with n numbers instead of 2" - 1. This  
simplification, however, will typically 
make it impossible for the  distribution 
Q(. 1 d) to  exactly nlatch the  posterior dis- 
tribution P(.l d) in Eq. 6. It  makes it im- 
possible, for example, to  capture "explain- 
ing away" effects where the  activity vector 
in  one  layer can  be econo~nically ex- 
plained by activating either unit n or unit  
b in  the  layer above but no t  by activating 
both of them.  

T h e  restriction of Q(.ld) to  a factorial 
distribution is a potentially very serious 
limitation. T h e  reason it is not  a fatal flaw 
is that  the  wake phase of the  algorithm 
adapts the  generative weights so as to  
make P(. I d) close to Q(. 1 d), thus limiting 
the  loss caused by the  inability of Q(.ld) 
to  model nonfactorial distributions. T o  see - ~ 

why this effect occurs, it is helpful to  
rewrite Eq. 5 in  a different forrn 

T h e  first two terms o n  the right in Eq. 8 are 
exactly l o g  P(d) under the current gener- 
ative model. T h e  last term, which cannot be 
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Fig. 2. (A) A generative model for 4 x 4 Images. The top level decides whether to use veiiica (V)  or 
horlzonta (H) bars, The next level decides whether each possible bar of the chosen orientation should be 
present in the image. (B) A sample of the images produced by the model in (A) with the ambiguous all-whlte 
images removed. A neural net with 16 input units, 8 units in the first hidden layer, and 1 hidden unit in the 
second hidden layer was trained on 2 x 1 O6 random examples produced by the generatlve model. After 
traning (l i ' ) ,  the probabilty distrbution produced in the sleep phase was almost exactly correct. (C) The 
generative weights to and from the 8 unlts in the first hidden layer. Positive welghts are whlte, negatlve 
welghts are black, and the area IS propoiiional to the magnitude. The largest weight shown IS 14.1 The 
generatlve bias of the unit is shown on the top rlght of each block, and its generative weght from the single 
unit in the layer above IS shown on the top left The rlght-most block shows the generative blases of the nput 
units. To encourage an easy interpretable solution, the generative weghts to the input units were con- 
strained to be positive. If they are allowed to go negative, the algorithm finds soutons that produce the 
correct distrbution but In a much more complicated way, and t requires more units in the second hldden 
layer. 

negative, is the Kullback-Leibler divergence 
between Q( .  d) and P (  d),  which is the 
amount by which the description length 
with Q ( .  d) exceeds l o g  P(d). Thus, for 
two generative models that assign equal 
probability to d, rni~lirnizing Eq. 8 with re- 
spect to the generative weights will tend to 
favor the model whose posterior distribution 
is most similar to Q(.I d). Within the avail- 
able space of generative models, the wake 
phase seeks out those models that give rise to 
posterior distributions that are approximate- 
ly factorial. 

Because we are making several approxi- 
mations, the  algorithm must be evaluated 
by its performance. Figure 2 shows that it 
can learn the correct multilaver generative , " 

nlodel for a simple toy problem. Moreover, 
after learning, the  Kullback-Leibler diver- 
gence in  Eq. 8 is only 0.08 bit, which indi- 
cates that this term has forced a solution in 
which the  generative model has a n  almost 
perfectly factorial posterior. 

W e  also tested the algorithm o n  two 
quantitative aspects of its capaclty to build 
models of in~ages of highly variable hand- 
written digits (Fig. 3A).  Learning 10 differ- 
ent models, one for each digit, we were able 
to recognize new digits accurately by seeing 

which models gave the most eco~lornical de- 
scriptions of them. Figure 3B shows that after 
the algorithm has learned a digit model, the 
fantasies generated by the network are very 
similar to the  real data. W e  also trained a 
single large network o n  all the digits and 
confirmed that it compressed new digits al- 
most as well as did these 10 digit-specific 
networks, and nearly twice as well as a nai've 
code (7). 

Two of the  most widely used unsuper- 
vised training algorithms for neural net- 
works are principal components analysis 
and competitive learning (sometimes 
calleil vector quantization or clustering). 
Both can  be viewed as special cases of the  
mi~ l imum description length approach, in  
which there is only one  hiilden layer and 
it is unnecessary to  distinguish between 
the  recognition and generative weights 
because they are always the  same (8).  O t h -  
er learning schemes have been proposed 
that  use separate feed-forward and feed- 
back weights (9-12). By contrast with 
adaptive resonance theory (9) ,  the  
counter-streams model ( l o ) ,  and the  algo- 
ri thm of Kawato e t  al. (1 1 ), t he  wake-sleep 
algorithm treats the  problem of unsuper- 
vised learning as statistical-one of fitting 

Fig. 3. Handwritten digits were normallzed and 
quantized to produce 8 x 8 bnary images. In (A) 
are shown 24 examples of each digt. A separate 
network was trained on each diglt class, and 24 
fantasies from each network are shown in (B). The 
variations within each digit class are modeled 
quite well. The error rate was 4.8% when new test 
images were classified by choosing the network 
that minimized the description length of the m -  
age. On the same data, nearest neighbor classifi- 
cation gave 6 7% errors, and back-propagation 
tralning of a sngle supervised net with 10 output 
units and one hldden layer gave a minimum of 
5.6% errors even when we used the test data to 
optimize the number of hidden units, the training 
tme.  and the amount of weght decay (g. 

a generative model that  accurately cap- 
tures the  structure in  the  innut examvles. 
Kawato's model is coucheil in  terms of 
forward and inverse models (13) ,  which 
constitutes a n  alternative way to  look at 
our generative and recognition models. 
T h e  wake-sleep algorithm is closest In 
spirit t o  Barlow's ideas about invertible 
factorial representations (14)  and Mum- 
ford's proposals (1 2 )  for mapping 
Grenander's generative model approach 
115) on to  the  brain. ~, 

T h e  ~ n i ~ l i m u ~ n  description length ap- 
proach to  u~~supervised learning was devel- 
oped to improve the pattern recog~l i t io~l  
abilities of artificial neural networks, but 
the simplicity of the wake-sleep learning 
algorithm makes it biologically interesting. 
For e x a m ~ l e ,  Hasselmo and Bower 116) 
have suggested that cholinergic inputs to 
the cortex may modulate the  degree of feed- 
forward control of ongoing activity. By a 
curious coincidence, the idea that the  per- 
ceptual system uses generative models was 
advocated by Helmholtz, so we call any 
neural network that fits a generative model 
to data by m i ~ ~ i m i z i ~ l g  the  free energy in Eq. 
5 a "Helmholtz machine." 
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Crack-Like Sources of Dislocation Nucleation 
and Multiplication in Thin Films 

D. E. Jesson,* K. M. Chen, S. J. Pennycook, T. Thundat, 
R. J. Warmack 

With the combination of the height sensitivity of atomic force microscopy and the strain 
sensitivity of transmission electron microscopy, it is shown that near singular stress 
concentrations can develop naturally in strained epitaxial films. These crack-like insta
bilities are identified as the sources of dislocation nucleation and multiplication in films 
of high misfit. This link between morphological instability and dislocation nucleation 
provides a method for studying the basic micromechanisms that determine the strength 
and mechanical properties of materials. 

Dislocation nucleation in thin films is 
of considerable scientific and technological 
importance in research areas ranging from 
the transport properties of superconducting 
layers to the regulation of electrical and op
tical properties in semiconductor devices. 
The mechanism by which the first dis
locations nucleate in a continuous thin film 
has been a central and unresolved issue 
of strained-layer epitaxy. It is known 
that misfit stress in thin films can be 
relieved by the introduction of either a 
nonplanar surface morphology (1-7) or 
misfit dislocations (8-10), but the con
nection and relative importance of these 
mechanisms has not been explored. Fur
thermore, the identification of dislocation 
sources and multiplication mechanisms 
presents an outstanding experimental 
challenge. 

Here we study strain relaxation in the 
technologically important Si-Ge system, 
which illustrates the general physical prin
ciples governing the growth of strained thin 
films. Our approach is to combine atomic 
force microscopy (AFM) with transmission 
electron microscopy (TEM) to provide 
complementary local height and strain in
formation. This procedure reveals that 
crack-like surface instabilities develop 
spontaneously and act as the sources of 
misfit dislocations in strained thin films. 
These observations connect the previously 
disparate fields of morphological instability 
and dislocation nucleation through the nat-
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ural framework of fracture mechanics. 
To examine the connection between dis

location nucleation and morphological in
stability at high misfits, it is necessary to 
study the critical transition regime between a 
coherent (highly stressed) and dislocated 
(partially relaxed) film. This transition, 
which occupies only a very small region of 
the enormous phase space of deposition vari
ables, was achieved in two stages. Initially, a 
10-nm-thick Si0 5Ge0 5 alloy layer was depos
ited on Si(001) by molecular beam epitaxy 
at 400°C to create a dislocation-free film 
associated with a nominally planar surface. 
The morphological instability of this surface 
was demonstrated by a 1-min in situ anneal 
at 560°C, during which a surface ripple mor
phology develops, as shown in Fig. 1, A and 
B. The ripple consists of island-like features 
that align along the elastically soft [100] and 
[010] directions, resulting in an arrangement 
of orthogonal domains. Typically, the is
lands are 15 nm high and 100 nm in 
diameter, with a strong tendency to facet 
along {501} planes. The formation of these 
low-energy planes would seem to stabilize 
the misfit-induced morphological instabil
ity, resulting in a network of significantly 
stressed valleys at island intersections lo
cated ~ 4 nm above the alloy-substrate 
interface. We would emphasize that this 
situation results from the instability of a 
planar film surface and is appreciably dif
ferent from the case in which the film 
grows initially by means of isolated islands 
{11) or fractures to create islands {12). 

The AFM image in Fig. 1A directly links 
this critical point in morphological instabil
ity with the onset of dislocation nucleation 
{13). Although island heights range from 13 
to 18 nm, the dislocations (arrowed) are 
always associated with the tallest islands. 
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