
work (5) .  A contact network is a directed 
graph with a single special source s and a 
single special sink t. Each edge is labeled 
with either x or 2, where x is some vari- 
able. Given any assignment of values to 
the variables, an edge is considered to be 
connected if the edge's formula evaluates 
to 1. Thus, if the edge is labeled with T, 
then it is connected only if x = 0. There- 
fore, the network in Fig. 2 is equal to  1 
o n l y i f w = l o r x = y = g = l .  

The S A T  problem for contact networks 
is to determine whether or not there is an  
assignment of values to the variables such 
that there is a directed connected ~ a t h  
from s to t. If two edges have the same 
label, then one is connected if and onlv if 
the other is. Put another way, all value; of 
x or ? are consistent. Our result follows 
from two simple claims: (i) Given any 
formula of size S, there is a contact net- 
work of size linear in S such that the set of 
assignments that satisfy the formula also 
satisfy the network. (ii) Given any contact 
network of size S, the S A T  problem for the 
network can be solved in order S DNA 
experiments. These two claims will prove 
our assertion about formulas. 

The first claim is classic (5). Two for- 
mulas are equivalent if they always give the 
same value for any assignment to the vari- 
ables. Any formula can be placed into a 
normal form with DeMorgan's Laws 

Through these identities, any formula is 
equivalent to one where all the negations are 
on variables. Assuming that our formulas are 
so restructured. I build a contact network 
that simulates the formula inductively. If the 
formula is a variable or its negation, then 
there is a single-edge contact network that is 
equivalent. For example, the formula F is 
equivalent to the network with an edge from 
s to t with the label ?. 

In the general case, the formula is equal 
to either E v F or E A F, where E and F are 
s im~ler  formulas. Assuming that G is the 
network for E and that H the one for F, 
the network for E v F is constructed by 
placing G and H in parallel (Fig. 3A).  
Clearlv, there is a connected ~ a t h  from s to , . 
t provided that there is either a path from s 
to t throueh G or through H. The network 

u " 

for E A F is constructed by placing them in 
series (Fig. 3B). In this case, there is a - 
connected path from s to t provided there is 
one through both G and H. 

It is quite simple to show how DNA 
experiments can be used to solve the SAT 
~ r o b l e m  for anv contact network. Associate 
a test tube P, with each node v in the 

contact network. The DNA in each test REFERENCES AND NOTES 
tube should encode in the usual way the set 
of assignments to the variables that connect 
s to v. The test tube P, associated with the 
sink t is the "answer." Suppose that v + u 
is an edge with the label x (?) and that P, is 
already constructed. Then, construct Pu 
simply by doing the extraction E(P,, x, 1)  
[E(P,, x, O)]. If several edges leave a vertex 
v, then use an  amplify step to get multiple 
copies of the DNA in test tube P,. Also, if 
several edges enter a vertex v, then pour the 
resulting test tubes together to form P,. 

The main open question is, of course, if 
one can actually build DNA computers 
based on the methods described here. The 
key issue is errors. The operations are not 
perfect. I expect that in the near future, 
experiments will be performed that will de- 
termine whether or not DNA-based comput- 
ers are a practical means of solving hard 
problems. 
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Computation Beyond the Turing Limit 
Hava T. Siegelmann 

Extensive efforts have been made to prove the Church-Turing thesis, which suggests that 
all realizable dynamical and physical systems cannot be more powerful than classical 
models of computation. A simply described but highly chaotic dynamical system called 
the analog shift map is presented here, which has computational power beyond the Turing 
limit (super-Turing); it computes exactly like neural networks and analog machines. This 
dynamical system is conjectured to describe natural physical phenomena. 

Humanity's intellectual quest to decipher 
nature and to master it has led to numerous 
efforts to build machines-endowed with 
artificial intellieence-that simulate the " 

world or communicate with it (1-4). The 
com~utational Dower and dvnamic behav- 
ior of such computers is a central question 
for mathematicians, computer scientists, 
and physicists. Computer models are ulti- 
mately based on idealized physical systems, 
called "realizable" or "natural" models. 
Since 1936, the standard accepted model of 
universal computation has been the Turing 
machine (5), which forms the basis of mod- 
ern computer science. The Church-Turing 
thesis, the prevailing paradigm in computer 
science, states that no realizable computing 
device can be more powerful (aside from 
relative polynomial speedups that are a re- 
sult of richer instruction sets or parallel 
computation) than a Turing machine (5). 
This report questions that assumption, pro- 
posing an alternative model of computa- 
tion, possibly realizable as well, whose com- 

Department of Information Systems Engineering, Faculty 
of Industria Engineering, Technion, Haifa 32000, Israel. 
E-mail: iehava@ie.technion.ac.il 

putational power can surpass that of the 
Turing model. The proposed model builds 
on a particular chaotic dynamical system 
(6); by applying the system to computer 
science, a "super-Turing" model can be de- 
veloped (7). 

Demonstrating the existence of an  ide- 
ally realizable super-Turing model has 
practical and theoretical implications. 
Theoretically, it could open the way for 
theories of computation that go beyond 
the Turing model. O n  a practical level, 
computers designed and built on the basis 
of super-Turing theories should be capable 
of modeling phenomena that existing 
computers are not ~owerfu l  enough to 
model well. 

In computer science, machines are clas- 
sified according to the classes of tasks they 
can execute or the functions they can per- 
form. The most popular model is the Turing 
machine, introduced by the English math 
ematician Alan Turing in 1936. The Turing 
machine (5) allows for unbounded "exter- 
nal" storage (tapes) in addition to the finite 
information represented by the current "in- 
ternal" state (control) of the system. At 
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every step, the machine reads the tape sym- 
bol cx (where cx E 10, 1, blank}) from under 
an access head, checks the state of the 
controls (where s E {I, 2, . . .IS/}), and exe- 
cutes three operations: 

1)  Writes a new binary symbol under 
the head ( P  E (0, 1)). 

2) Moves the head one letter to either 
right or left (m E (L, R}).  

3)  Changes the state of the control (st E 
{I,  2, . . .lSi}). 

The transition of the machine can be 
summarized by a function 

When the control reaches a special state, 
called the "halting state," the machine stops. 
The input-output map (or the function) 
computed by a Turing machine is defined by 
the pair of finite binary sequences on its tape 
before and after the computation, respective- 
ly. The finiteness of the input and output is 
a crucial requirement in computer science, 
assuring that the ability to compute depends 
purely on the inherent computational power 
of the model rather than on a larger amount 
of external information. 

There are many variants of the basic 
model that yield the same power, such as 
adding tapes, access heads, and tape dimen- 
sions. Other variants may result in more 
powerful, though nonrealizable, models. 
Nonuniform Turing machines exemplify 
such models 18): The machines receive on , , 

their tape, in addition to the input, another 
sequence w, to assist in the computation. 
For all possible inputs of the same length n, 
the machine receives the same advice se- 
quence w,, but different advice is provided 
for input sequences of different lengths. We 
are focusing on the class of nonuniform 
machines that compute in polynomial time 
(and use a polynomial long advice), denot- 
ed by P/poly (8). For example, a super- 
Turing function that appears in P/poly is 
the "unary halting" function (5): Given a 
unary encoding of a computer program f 
and a sequence x E {I}*, the function deter- 
mines whether the Drogram terminates - 
when acting on the sequence x. If both 
advice and time are exponentially long 
[that is, O(Zn)], the advice can be used to 
indicate the desired resDonse for each of the 
2" possible input strings of length n and thus 
to compute all functions f: (0, I}* + (0, 11, 
including noncomputable ones. 

Siegelmann and Sontag (9,  10) noticed 
that such nonuniform classes are indeed 
very natural for analog computation mod- 
els. They introduced the first model of com- 
putation that is uniform but yet has non- 
uniform super-Turing capabilities; this 
model is the classical analog recurrent neu- 
ral network (ARNN), which is popular in 
practice as a machine with automatic learn- 
ing and adaptation capabilities (1 1); see 

Fig. 1. [A related model is the model of 
com~utat ion over the real numbers 112). . . 
This interesting model, however, is incom- 
parable with the modern theory of comput- 
ability, as it does not comply with the fi- 
niteness of input and output.] The ARNN 
consists of a finite number of neurons. The 
activation of each processor i = 1, . . . , N 
is updated by the equation 

where N is the number of neurons, M 
is the number of external input signals, xj 
are the activations of the neurons, u, are 
the external inputs, and aij, bij, and c, are 
the real coefficients, also called constants 
or weights ( the name "analog" indicates 
real, rather than rational, coefficients). 
The  function u is the simplest possible 
"sigmoid," namely the saturated-linear 
function 

(but various other sigmoidal functions may 
substitute it). A subset of the N neurons is 
singled out to communicate the output of 
the network to the environment. I n ~ u t s  
and outputs are streams of letters, and com- 
putability is defined under the convention 
that is sometimes used in practical commu- 
nication networks: There are two binary 
input channels, where one is used to carry 
the binary input signal and the other one 
indicates when the input is active. A similar 
convention is applied to the output. 

The ARNN computes the super-Turing 
class P/poly in polynomial time and all bi- 
narv functions in exuonential time (9). 
 his fact is connectedLto classical comput- 
ability by the observation that when the 
real weights are constrained to be rational 
numbers, the network has Turing power 
only (1 0, 13). [Follow-up generalizations 
appear in (14-1 6)]. Furthermore, determin- 
istic and probabilistic ARNNs are compu- 
tationally equivalent (1 6). 

Analogous to the Church-Turing thesis, 
the ARNN was offered as a basic analog 
computation model, with the conjecture 
that "any realizable analog computer will 
have no more power (up to polynomial 
time) than the analog recurrent networks" 
(9) .  Here, I assert that although the 
Church-Turing thesis is indeed a funda- 
mental observation for the large class of 
discrete computing devices, it may not 
provide the whole picture, and the analog 
computation thesis is thus required. T o  
support this assertion, I present a chaotic, 

m e -  ,P' t 

Fig. 1. The analog recurrent neural network 
(ARNN). (A) Graphic view, (B) Engineering view. 

realizable dynamical system that computa- 
tionally is as strong as the analog model- 
the "analog shift map." 

In the literature of dynamical systems, 
chaos is commonly exemplified by the 
"shift map" [such as the Baker's map (1 7) or 
the horseshoe map (1 8);  Fig. 21 over a set of 
bi-infinite dotted sequences. Let E be a 
finite alphabet; a dotted sequence over E 
(denoted by E) is a sequence of letters 
where exactly one is the. dot. sign ( . ) and 
the rest are all in E. The dotted sequences 
can be finite, (one-side) infinite, or bi- 
infinite over E. Let k E N be an integer, the 
shift map 

s ' ~  : E + E : (a) ,  + (a),+,< 

shifts the dot k places, where negative val- 
ues cause a shift to the left and positive ones 
a shift to the right. 

I define the "analog shift" as follows: 
A dotted substring is replaced with anoth- 
er dotted substring (of equal length) ac- 
cording to a function G ;  then, this new 
sequence is shifted an  integer number of 
places left or right according to a function 
F. Formally, the analog shift is the map 

where the function 

describes the modification of the sequence, 
and the function 

indicates the amount of shifting of the dot. 
Both F and G have a finite domain of 
dependence (DoD)-that is, F and G de- 
pend only on a finite dotted substring of the 
sequence on which they act. The domain of 
effect (DOE) of G may be finite, infinite, or 
bi-infinite. Finally, the operation @ is de- 
fined by 

where E is the empty element not contained 
in E. 
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Here, the DoD is 1.0 and no changes occur; 
this is a fixed point. A special case, when 
the DOE of G is finite, is the generalized 
shift map, introduced by Moore (19, 20), 
which was proven to be computationally 
equivalent to a Turing machine. When G is 
not applied, we are back to shift maps (17, 

Fig. 2. Various physical shift maps, (A) Smale's 
horseshoe. (B) Smale's horseshoe abbreviated to 
the unit square. (C) The Baker's map. 

To  illustrate, let us assume the analog 
shift is defined by 

Here, 5 denotes the left infinite string 
. . . 51413 in base 2 rather than in base 10. 
This table is a short description of the dy- 
namical system, in which the next step de- 
pends on the first letter to the right of the 
dot and the one to its left. If these letters 
(that is, the DoD) are 0.0, then (according 
to the first row of the table) the left side of 
the dot is substituted by 5 and the dot moves 
one place to the right. If the DoD is instead 
0.1 (as in the second row of the table), the 
second letter to the right of the dot becomes 
0 and there is a right shift, and so on. 

The dynamic evolving from 

is as follows: here, the DoD is 1.1, hence (by 
the fourth row of the table) the letter to the 
right of the dot becomes 0 and the dot is 
shifted right: 

Now. the DoD is 0.0: 

. . 

18). 
The computation associated with the 

analog shift systems is the evolution of the 
initial dotted sequence until a fixed point 
is reached, from which the system does not  
evolve anymore. The  computation does 
not  always end; when it does, the input- 
output map is defined as the transforma- 
tion from the initial dotted sequence to 
the final subseauence to the right of the 
dot. ( In the example above, a fixed point 
is reached in four steps, and the computa- 
tion was from 000001.10110 to 00.) T o  
comply with the computational con- 
straints of finite input-output, attention 
was constrained to systems that start with 
finite dotted sequences and that stop with 
either finite or left infinite dotted se- 
quences only. Even under these con- 
straints, the analog shift computes richer 
maps than the Turing machines. 

Let AS(k) denote the class of functions 
computed by the analog shift (AS) map in 
time k, NN(k) the class of functions com- 
puted by the ARNN in time k, and poly(k) 
the class of polynomials in k; my theorem 
states that 

Theorem 1. Let F be a function so that 
F(n) r n. Then, 

AS(F(n)) C NN(poly(F(n))), and 
NN(F(n)) C AS(poly (F(n))). 

[Although the result is mathematically 
profound, a detailed proof is not provided 
here. For rigorous mathematical proof, see 
(21 1.1 

Sketch of proof. Assume, without loss of 
generality, that the finite alphabet E is 
binary; that is, E = {0, 11. 

1)  AS(F(n))  C NN(Poly(F(n))): 
Given a dotted sequence a = 

. . .aL,aL,aLl . ala,a,. . ., it is map- 
ped into the two sequences 

The  analog shift map is redefined as 

where dl and dr are the left and right 
parts, respectively, of the DoD. The 
value of al, as well as a,, is encoded in 
a neuron, using a Cantor set represen- 
tation (10). The next operation is 
decided by the first few bits of both 
neurons (DoD). The operation in- 
volves either substitution of the first 
finitely many bits (when G is finite to 
this side) or loading of the neuron 

with a new value (when G is infi- 
nite). These operations require con- 
stant time, resulting in an efficient 
simulation. 

2) NN(F(n))  C AS(poly (F(n))) :  
For simulating a Turing machine 
with advice by an analog shift, its 
configuration is encoded in a dotted 
sequence using the fields 

The  string starts with an  infinite se- 
quence over E (which is mainly ignored), 
followed by the left-end marker ("01"). 
Next comes the part of the tape to the left of 
the read-write head (the pair "10" represents 
O and " 11" represents I ) ,  then the dot, the 
internal state of the machine (encoded as a 
sequence of 0's ending with I ) ,  the letter 
under the head and the right Dart of the c, L 

tape, and infinitely many 0's that encode 
the empty part of the tape. Note the asym- 
etry of the left and right empty parts of the 
taDe: this is a result of the asvmetric defini- 
tion'of the output of the analog shift. The 
initial dotted string is 

where x is the finite input string. The G 
function substitutes the left side of the dot 
with the infinite string 

which in polynomially many steps becomes 
the associated advice (along with lots of 
garbage) 

From this point, each step of the machine is 
simulated simply; the details are left to the 
reader. 

The appeal of the analog shift map is not 
only as an almost classical, chaotic dynam- 
ical system that is associated with analog 
computation models. It is also a mathemat- 
ical formulation that seems to describe ide- 
alized physical phenomena. The ideiiliza- 
tion allows for model assumptions such as 
any convenient scale to describe the system, 
noise-free environment, and physics of con- 
tinuous medium. Some of the physical mod- 
els, previously used to simulate Turing ma- 
chines, turn out to be exactly as powerful as 
the analog models (both to simulate and to 
be simulated by). 

This assertion can be demonstrated, for 
example, with the system introduced by 
Moore (20). This is a "tov model" describing . , 

the motion of a particle' in a three-dimen- 
sional potential, such as a billiard ball or a 
particle bouncing among parabolic mirrors. 
(Note that this system describes a topologi- 
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cal dynamics rather than a smooth behav- 
ior.) A finite number of mirrors suffices to 
describe the full dynamics, one for each 
choice of the DoD. The (x,y) coordinates of 
the particle when passing through a fixed, 
imaginary plane simulate the dotted se- 
quence x ,  y. To  define the computation, the 
particle starts in input location 0 .  yo, where 
yo is the finite input string; the output is 
defined in finite terms as well. Although 
Moore proved the Turing machine simula- 
tion bv such a svstem, the advice can also be 
encodkd in a uiiform manner by the char- 
acterizations of the mirrors. For exam~le ,  the 
concatenation of all advice can be the 
characterization of the first mirror that is 
being hit,  continuing with mirrors of finite 
characterizations, simulating the finite 
DOE. When the halting state of the Turing 
machine is reached, the particle hits a 
mirror that throws it to a uarticular ob- 
servable x coordinate, where all points are 
fixed. The  o u t ~ u t  is defined as the Y co- 
ordinate when this observable x, is 
reached. Forcing the input and output to 
reside in observable areas (using, for ex- 
ample, Cantor set encoding) makes the 
system realizable. Another possible real- 
ization may be based on the recent optical 
realization of the Baker's map (22). 

Although it may have seemed that infi- 
nite precision was required to fully describe 
the associated computation, this is not the 
case, because linear precision suffices for an- 
alog computation models (9). That is, if one 
is interested in computing up to time q, both 
the mirror system and the location of the 
particle bouncing there are not required to 
be described (or measured) with more than q 
bits. This property is in accordance with the 
sensitivity of chaotic systems to exponential- 
Iv ~recise initial conditions (here, the mirror , L . , 

system), which suggests that the analog shift 
map is indeed a natural model of chaotic 
(idealized) physical dynamics. 
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Dating and Context of Three Middle Stone Age 
Sites with Bone Points in the 
Upper Semli ki Valley, Zaire 
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The extent to which the earliest anatomically modern humans in Africa exhibited behav- 
ioral and cognitive traits typical of Homo sapiens sapiens is controversial. In eastern Zaire, 
archaeological sites with bone points have yielded dates older than 89':; thousand years 
ago by several techniques. These include electron spin resonance, thermoluminescence, 
optically stimulated luminescence, uranium series, and amino acid racemization. Faunal 
and stratigraphic data are consistent with this age. 

Dur ing  the late middle to early upper Pleis- 
tocene in Africa, anatomically modern hu- 
mans (Homo sapiens sapiens) replaced archa- 
ic Homo sapiens. Middle Stone Age (MSA) 
archaeological materials provide informa- 
tion on human behavior during this transi- 
tion. In tropical Africa, MSA artifacts with 
associated fauna and chronometric ages are 
known from only a few well-excavated 
rock-shelter and stratified o~en -a i r  contexts 
(1,  2). In this report, we describe the geo- 
logical context and dating of three MSA 
sites with bone points in eastern Zaire. 

The  Semliki Valley (Fig. 1) runs north- 
northeast along the floor of the western 
(Albertine) branch of Africa's modern rift 
valley system, from Lake Rutanzige (former- 
ly known as Lake Edward) to Lake Mutan- 
zige (formerly Lake Albert) (3). Sites along 
the northern shore of Lake Rutanzige and 
the Upper Semliki Valley range from Plio- 
cene to Holocene age (4). 

The current savanna-woodland vegeta- 
tion and fauna of the Upper Semliki Valley 
are a response to rain-shadow microclimatic 
effects of the western rift wall and to the 
porous, base-rich ash of early Holocene age 

that blankets the local landscape (5). These 
factors may have been quite different during 
the Pliocene and Pleistocene. In contrast to 
the eastern (Gregory) rift, exposures of Plio- 
Pleistocene and Pleistocene sediments in 
the Semliki are verv limited. The chronol- 
ogy of the sequence before this study was 
based largely on faunal comparisons and 
lithostratigraphy. 

Early archaeological work (4,  6) focused 
primarily on the lake-shore site of Ishango, 
with its small barbed bone and ivory-points, 
fish and mammal bones, fragmentary hu- 
man remains, quartz tools, and an engraved 
bone haft that may indicate an understand- 
ing of multiplication by 2's. Ishango and 
other archaeological and paleontological 
occurrences (7) attracted renewed multidis- 
ciplinary research in the Upper Semliki (8- 
12) between 1982 and 1990. 

New materials (Table I ) ,  especially os- 
trich eggshell, were recovered for dating 
from the original Ishango site (Ishango 11) 
and from a comparable-age site 2 km down- 
stream (Ishango 14) (13). Together with a 
restudy of the original fauna by Peters (14), 
these suggested that the niweau fossilif2re 
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