
Src-family PTKs (8) and Syk PTK (9). 
Thus, IL-2R components recruit one or 
more PTKs, all of which may be required for 
maximum signaling. Finally, our experi- 
ments with reconstituted IL-2R provide 
functional evidence for the involvement of 
Jaks in the growth signal transmission by 
cytokines. 
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Role of TCR 5 Chain in T Cell 
Development and Selection 

Elizabeth W. Shores,* Kun Huang, Tom Tran, Eric Lee, 
Alexander Grinberg, Paul E. Love 

Signals mediated by the T cell receptor (TCR) are required for thymocyte maturation and 
selection. To examine the role of TCR (chain signals in development, TCR expression was 
restored in [-deficient mice with transgenic [ chains that partially or completely lacked 
sequences required for signal transduction. The ( chain played a role in thymic devel- 
opment by promoting TCR surface expression, but [-mediated signals were not essential 
because TCRs that contained signaling-deficient ( chains promoted T cell maturation and 
transduced signals associated with thymic selection. 

Differentiation of precursor thymocytes 
into mature, functional T cells is a multi- 
step process controlled by signals delivered 
through the TCR (1 ) .  The TCR is com- 
posed of at least six different subunits that 
function either in antigen recognition or 
in signal transduction (2).  The clonotypic 
TCRaP (or TCRyS) chains are responsi- 
ble for ligand specificity, lack inherent 
signaling activity, and associate nonco- 
valently with multiple signal-transducing 
subunits: the CD3y, CD36, and CD3e 
components and a dimer composed of one 
or more members of the ( family of 
proteins [(, q, or the y chain of the type I 
immunoglobulin (Ig) E Fc receptor, 
FceRly] (3). The CD3 and ( family pro- 

p- 
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teins contain partially conserved sequenc- 
es in their cytoplasmic domains, called 
tyrosine-based activation motifs (TAMs), 
that couple the TCR to intracellular 
signal transduction pathways (4). These 
motifs are not identical, and it has 
been suggested that they may recruit dis- 
tinct signal transduction molecules (4, 5). 
The CD3 chains each contain a single 
TAM, whereas ( contains three TAMs 
and is thought to represent the predomi- 
nant TCR signaling structure. 

Thymocyte development is severely af- 
fected in (-deficient ((-Ip) mice: TCR 
surface expression is barely detectable, 
C D 4 + C D 8  and CD4-CD8+ [single-pos- 
itive (SP)] thymocytes are markedly de- 
creased (< 1 % of control), and few T cells 
are found in the periphery (6, 7). Howev- 
er, because ( is required for efficient sur- 
face expression of the other TCR subunits 
including the CD3 signaling molecules, 
the role of (-mediated signals in develop- 

tutes of Health, Bethesda, MD 20892, USA, ment could not be directly assessed in ( - Ip  
*To whom correspondence should be addressed. mice. To determine the importance of 
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[-specific signals, we examined thymocyte 
maturation in [-I- mice reconstituted 
with transgenes encoding natural or ge- 
netically engineered variants of [ that re- 
store TCR surface expression but that dif- 
fer in their ability to transduce signals. 

The construction of transgenes that en- 
coded full-length [; q, a naturally ex- 
pressed splice variant of [; and the trun- 
cation variant 5-D108-164 (amino acid 
residues 108 through 164 deleted) has 
been described (Fig. 1) (8, 9). For this 
investigation, we also generated trans- 
genes that encoded deletion variants 
5-D66-114 and 5-D67-150 (Fig. 1). Be- 
cause at least one intact TAM is required 
for signal transduction (10, 1 I), the 
5-D67-150, without a TAM, directed the 
synthesis of a signaling-deficient [ chain. 
All of the transgenes were under the con- 
trol of the human CD2 promoter and en- 
hancer, which confers high-level copy 
number-dependent expression specifically 
in the T cell lineage (12). Multiple 
founder lines were obtained for each con- 
struct, and the transgenes were subse- 

A 

qP1ARDPEMGGKoQRRRNPoEGwNALoKDKMAEAYsEIG 
Ips 'P 
TKGERRRGKGHDGLYOGLSTATKDNDALHMOTLAPR 

8 
EC TM Cyloplasmic 

r - Y Y  Y Y " Y I  ---  
a b c 

Rg. 1. (A) Amino acid sequence of the murine 5 
chain cytoplasmic domain. The conserved TAMs 
(YXXUIX,.,YXXVI; a slash indicates Lor I at the 
indicated position) are underlined. Single-letter 
abbreviations for the amino acid residues are as 
follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, 
Gly; H, His; I ,  Ile; K, Lys; L, Leu; M, Met; N, Asn; 
P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, 
Trp; X, any amino acid; and Y, Tyr. (6) Schematic 
representation of coding sequences in the vari- 
ous transgene constructs. The extracellular (EC), 
transmembrane (TM), and cytoplasmic domains 
are depicted in black, shaded, or open boxes, 
resbectively. The hatched box at the COOH- 
terminus of the q chain represents the unique 
region generated by alternative splicing. The lo- 
cation of TAMs (a through c) in the cytoplasmic 
domains of Tg proteins and their tyrosine resi- 
dues are indicated. 

quently mated into the 5-1- background 
(in which expression of both endogenous [ 
and q is abolished) (6) to obtain the 
transgenic (Tg) lines ([-l-;Tg). 

Surface TCR expression on thymocytes 
from the various [-l-iTg lines was exam- 
ined by two-dimensional SDS-polyacryl- 
amide gel electrophoresis (SDS-PAGE) 
(Fig. 2). Thymocytes from unreconstituted 
[-I- mice expressed small amounts of par- 
tial, [-deficient TCR complexes on their 
surface (1 3). In contrast, immunoprecipi- 
tates from surface-radioiodinated [-I-iTg 

thymocytes demonstrated that the trans- 
genes encoded [ chain or [ chain variant 
proteins of the predicted sizes that dimer- 
ized, assembled with other TCR subunits, 
and promoted the surface expression of 
intact TCR complexes. Immunofluores- 
cence and flow cytometry (FCM) con- 
firmed the expression of surface TCRs on 
thymocytes and peripheral T cells from 
transgene-reconstituted [-I- mice (Fig. 
3). Analysis of multiple founder lines for 
each transgene revealed that the amount 
of surface TCR increased in proportion to 

the copy number and expression of the 
transgenes (1 3). For this investigation, we 
analyzed Tg founder lines with compara- 
ble surface TCR expression (Fig. 3). 

To assess T cell development in [-I-" 

mice, we examined CD4 and CD8 expres- 
sion on thymocytes and lymph node T 
cells. In [-I- mice, the numbers of 
CD4+CD8+ [double-positive (DP)] thy- 
mocytes were reduced, and the numbers of 
the SP thymocytes were especially reduced 
(Fig. 3 and Table 1). Expression of Tg 
full-length [ chain restored T cell devel- 
opment in [-I- mice (Fig. 3 and Table 1) 
(6). Each of the [ chain variants, whether 
they had zero, one, or two TAMs, also 
promoted T cell maturation (Fig. 3 and 
Table 1). Total thymocyte numbers, 
which reflected predominantly DP thymo- 
cytes, were increased 3- to 10-fold in 5-1 
- ; T ~  relative to [-I- mice (Table 1). Im- 
portantly, SP thymocytes were increased 
25- to 200-fold (Fig. 3 and Table l ) ,  and 
peripheral T cells were increased more 
than 5-fold (1 3) in [-l-;Tg mice relative to 
5-1- mice. Regardless of the particular 

Fig. 2 Subunit composition of TCR complexes expressed on thymocytes from (+I+, (-I-, and (-I-;TQ 

mice. @) (-I-, (B) (+I+ (C) (-l-;CTQ, (D) (-l-;nTQ, (E) (-/-:C410&164TQ (F) (-I-:C.-D68-114Tg and (G) 
(-/-:C-0s7-150Tg. We su&ce-radioiodinated total thymocytes (7 7), solubiliied them in 1% digionin lysis 
buffer to maintain intact TCR complexes, and then immunoprecipitated the proteins with antibody 
551 to ( ((+I+, (-I-;Vg, (-/-;C-DSj-l14Tg, and (-/-;C-C67-'50Tg), antibody 528 to ( ((-j-;fi and 
(-'-;cD108-164Tg), or both antibodies ((-I-). lmmunoprecipitates were resolved by two-dimensional 
NR-R SDS-PAGE and visualized by autoradiography. Migration positions of the various TCR subunits are 
indicated. Molecular size standards are shown at left. 

Table I. Numbers of thymocytes in (+I+, (-I- and (-I-;Tg mice. Data are given in 106 cells as means 2 
SEM for at least six mice per genotype. Thymocytes were obtained from age-matched 4- to 8-week-old 
mice. We calculated subpopulations by multiplying the total thymocyte number by the percent of cells in 
a given quadrant as depicted in Fig. 3. 

Genotype Total CD4-CD8- CD4+CD8+ CD4+CD8- CD4-CD8+ 

(+I+ 219 + 4 6.8 + 2.0 186 + 44.7 17.6 + 4.6 4.8 2 3.1 
(-I- 24 + 20 4.7 + 3.3 20 + 16.5 0.1 1 + 0.09 0.05 + 0.05 
(-/-;cT~ 259 + 103 6.3 + 3.6 217 + 87.1 24.6 + 10.5 4.9 + 2.3 
(-/-;~TQ 72 + 34 4.7 + 1.6 54 ? 27.7 6.9 + 3.8 2.0 + 0.8 
(-I-:C4108*64T~ 192 + 59 5.6 + 2.1 168259.0 11.024.2 2.7 + 0.5 
(-/-:C.-D68-114TQ 118+51 3.4 2 1 .o 99 + 45.0 9.0 2 4.8 2.1 2 0.8 
(-/-;C;D~~-ISOT~ 96 + 38 3.9 * 0.9 84 + 38.7 4.6 + 2.3 1.4 + 0.5 
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construct, rescue of thymocyte develop- 
ment was transgene dose-dependent and 
directly paralleled the amount of TCR 
surface expression (13). Consistent with 
this observation, [-I- mice that express 
endogenous q but only small amounts of 
TCR do not efficiently generate SP thy- 
mocytes (14). Thus, although { plays a 
role by promoting surface expression of 
the TCR, signals delivered by { are not 
absolutely required for T cell develop- 
ment. These results also suggest that sig- 
nals transduced by the CD3 subunits alone 
are sufficient for T cell maturation. 

Although the [ chain signaling motifs 
were not absolutely required, their pres- 
ence appeared to augment T cell devel- 
opment as demonstrated by the com- 
parison between mice expressing full- 
length [ (three TAMs) and those express- 
ing {-D67-150 (zero TAMs) (Fig. 3 
and Table 1). Although thymocytes from 
{-I-;c-D67-150Tg mice expressed the largest 
amounts of TCRs, these mice generated 

the fewest SP cells, whereas mice express- 
ing the full-length { chain generated the 
largest number of SP cells (Fig. 3 and 
Table 1). Together, these data suggest that 
{ chain TAMS can participate in thymo- 
cyte development, presumably by contrib- 
uting to the overall signaling potential of 
the TCR complex, but are not required for 
the generation of SP T cells. 

We next assessed the ability of the 
various reconstituted TCRs to transduce 
signals associated with positive selection. 
Positive selection of DP thymocytes is as- 
sociated with the coupling of TCR-medi- 
ated signals to protein kinase C (PKC)- 
dependent CD69 expression (15). Cross- 
linking of TCRs with antibody to TCRP, 
but not with a control antibody to CD28, 
resulted in an increase in CD69 on DP 
thymocytes from all of the transgene-re- 
constituted lines (Fi& 4), indicating that { 
chain signaling is not required to couple 
thymocyte TCRs to the PKC activation 
pathway. 

Thymus Lymph node Thymus Lymph node 

Fig. 3. Analysis of thymocytes and lymph node T cells in 5-/-iTQ mice. Shown are immunofluorescerce 
and flow cytometric analyses of cells from young adult (4- to 6-week-old) <-I- mice into which had been 
bred transgenes encoding full-length or variant 5 chains. Cells were stained with directly labeled mAbs to 
CD4, CD8, or TCRp (18). For two-color plots, the numbers in quadrants represent the percent of cells 
contained in that quadrant. For one-color histograms, the shaded areas represent staining with control 
antibody (PE conjugated to mouse lgG2A). Lymph nodes were isolated from the same mice whose 
thymocyte profiles are shown. 

TCR signaling in thymocytes also re- 
sults in down-regulation of transcripts en- 
coded by the recombination activating 
genes RAG-1 and RAG-2 (1 6). To assess 
the ability of TCR complexes to regulate 
RAG expression, we cross-linked the TCR 
DP thymocytes with antibody to TCRP 
for 6 hours, after which the expression of 
RAG-1 and RAG-2 transcripts was exam- 
ined by Northern (RNA) blot analysis 
(Fig. 5A). RAG-1 and RAG-2 mRNAs 
decreased in DP thymocytes from both 
{+I+ and { - / - ~ ~ g  mice in response to TCR 
cross-linking but not when cells were cul- 
tured on plates that had been treated with 
phosphate-buffered saline (PBS) alone 
(Fig. 5A) or control antibody to CD28 
(13). The reduction in RAG transcripts 
was not simply due to induction of cell 
death because the identical signals result- 
ed in an increased expression of the RNA 
encoding CD5 (Fig. 5A). Thus, TCR com- 
plexes that include { chain variants that 
are either impaired or deficient in signal- 
ing potential are competent to transduce 
physiologically relevant signals and are 
sufficient to promote the development of 
mature SP T cells. 

The discovery that T cell development 
can proceed in the absence of [ chain sig- 
naling prompted us to examine the signaling 
potential of TCR complexes on DP thymo- 
cytes from 5-I- mice. Thymocytes from 
5-1- mice express barely detectable surface 
TCR (Fig. 3) (6, 7). Surface labeling and 
immunoprecipitation revealed that these 
complexes are composed of ap heterodimers 
and CD3y, CD36, and CD3e chains that do 
not appear to be associated with other po- 
tential signaling molecules such as FceRly 
(13). However, TCR complexes on DP thy- 
mocytes from [-/- mice nansduced signals 
that resulted in up-regulation of CD69 sur- 
face expression (Fig. 4), up-regulation of 
CD5 mRNA (Fig. SB), and down-regulation 
of RAG mRNAs (Fig. 5B). 

We have shown that TCR complexes 
that contain signaling-deficient { chains 
can promote the generation of mature SP 
T cells. Our observation that these com- 
plexes transduce signals is consistent with 
other studies in T cell lines (1 I), and we 
further demonstrated that these signals are 
relevant to thymocyte selection. Our data 
suggest that the critical function of [ in 
development is its ability to promote TCR 
surface expression. Although {-mediated 
signals are not absolutely required, they 
can contribute to development because 
full-length { chains were better able to 
reconstitute T cell development than 
those lacking one or more TAMS. These 
findings support the suggestion that the 
TAM repeats in the [ chain function in 
signal amplification (10, 11). The ability 
of [ to amplify TCR signals may be re- 
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