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C/ell deformation is an integral feature of 
biological function even for passive capsules 
like red blood cells in the circulation. Such 
deformation can cause major rearrange­
ments of structural proteins and lipids and 
thereby affect biological activity. The dis­
tributions of components in deformation 
provide significant clues to both strong 
structural connections and the susceptibili­
ty of those connections to gradients in 
chemical potential. A method has now 
been developed to map molecular distribu­
tions in well-defined states of deformation. 
Though this method was designed to be 
widely applicable to many types of cells, we 
used the human red blood cell as a proto­
typical system to demonstrate how extreme 
deformations act differentially on proteins 
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cytoskeletal networks. The results reveal a 
highly durable network that can sustain 
large chemical gradients with little relax­
ation over long periods (—30 min) of de­
formation. 

The erythrocyte is a highly deformable 
membrane capsule with most of its mechan­
ical features (with the exception of initial 
shape) largely decoupled from intracellular 
metabolism. Although many of the cell's 
component proteins, lipids, and carbohy­
drates have been identified (I), the func­
tions of and physical connections between 
molecules in the assembled membrane dur­
ing deformation are less clear. Key aspects 
of the deformability of the membrane arise 
from the underlying cytoskeleton (2), a pro­
totypical assembly of structural proteins (3). 
Ultrastructural studies on membranes pre­
pared for electron microscopy suggest, for 
example, that the in situ cytoskeleton is a 
highly organized, two-dimensional network 
of spectrin filaments interconnecting 
—35,000 nodes or junctional complexes 
(3). The isolated junctional complexes con­
sist primarily of three highly conserved and 
pervasive structural proteins: spectrin, ac-*To whom correspondence should be addressed. 
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Molecular Maps of Red Cell Deformation: 
Hidden Elasticity and in Situ Connectivity 

D. E. Discher,* N. Mohandas, E. A. Evans 

Fluorescence-imaged micropipette aspiration was used to map redistribution of the 
proteins and lipids in highly extended human red blood cell membranes. Whereas the fluid 
bilayer distributed uniformly (± 10 percent), the underlying, solidlike cytoskeleton of spec­
trin, actin, and protein 4.1 exhibited a steep gradient in density along the aspirated 
projection, which was reversible on release from deformation. Quantitation of the cy­
toskeletal protein density gradients showed that skeletal elasticity is well represented by 
a grafted polymer network with a ratio of surface dilation modulus to shear modulus of 
approximately 2 :1 . Fractionally mobile integral proteins, such as band 3, and highly 
mobile receptors, such as CD59 as well as glycophorin C in protein 4.1-deficient cells, 
appeared to be squeezed out of areas dense in the underlying network and enriched in 
areas of network dilation. This complementary segregation demonstrates patterning of 
cell surface components by cytoskeletal dilation. 



tin, and protein 4.1 (4). The cytoskeletal 
assembly is thought to attach to the bilayer 
by association with integral membrane pro- 
teins, including band 3, a multispanning 
transmembrane protein (5) present at high 
surface density (- lo4 molecules per square 
micrometer). Knowledee of the distribu- - 
tions of integral and peripheral membrane 
proteins relative to each other during large 
deformations of the cell is crucial to our 
understanding of in situ linkages. 

To expose patterns of molecular compo- 
nents in response to forced deformation, we 
have developed the technique of fluores- 
cence-imaged microdeformation (FIMD). 
Particular constituents were first fluores- 
cently labeled either externally by standard 
methods (6, 7) or internally by reversible 
permeabilization (8). Labeled components 
were expected to be either freely mobile in 
the lipid bilayer (lipid analogs and lipid- 
anchored proteins) or structurally integrat- 
ed with the membrane skeleton (actin, 
spectrin, and band 3). Subsequent to label- 
ing, an intact cell or a resealed cell "ghost" 
was aspirated into. a micropipette (Fig. 1) 
(9). The extent of deformation was set bv 
the projection length (L) inside the pipette', 
which was controlled by prior osmotic ad- 
justment of the cell volume. Because cell 
surface area is maintained virtually constant 
by the small surface compressibility of the 
bilayer (lo), pressurization of the cell en- 

Fig. 1. Bright-field and fl 
red cell deformation (9). (A) Bright-t~eld image 
of a hypotonically swc .ell (typical 
range of 160 to 250 mc , aspiration 
into a micropipette. Cel ;pended in 
phosphate-buffered saline (pn 1.4 5 0.1) con- 
taining 30 to 50% autologous plasma or hu- 
man serum albumin (5 to 15 mg/ml) to prevent 
adhesion to the pipette glass. All experiments 
were performed at room temperature. (6) Mi- 
cropipette aspiration of the cell in (A) with a 
pressure (AP) of 0.02 atm, which is well below 
the level for lysis (2) or cell fragmentation. Mi- 
cropipette diameters, D = 2R,, were in the 
range of 1.4 to 2 km. (C to E) Fluorescence 
images showing the distributions of the lipid 
bilayer, labeled with FL-PE, on an intact cell 
(C); the red cell cytoskeleton, revealed by rho- 
damine-phalloidin labeling of actin, i 
cell ghost (D); and rhodamine-labe 
CD59 on an intact red cell (E). 
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sured smooth membrane contours. After a 
period of time between several seconds and 
30 min, a fluorescence image of the constit- 
uent distributions in the deformed state was 
collected. Before deformation, the constit- 
uent density fields were uniform (210%). 

To image the lipid bilayer distribution, 
we used the phospholipid analog fluo- 
rescein-phosphatidylethanolamine (FL-PE) 
and the lipophilic probe 1,l 'dioctadecyl- 
3,3,3 ',3'-tetramethylindodicarbo-cyanine 
perchlorate [diIC,, (5)] (6). FL-PE distrib- 
uted uniformly along the membrane pro- 
jection as well as over the spherical seg- 
ment outside the pipette (Fig. lC), con- 
sistent with a mobilitv of >95% observed 
in fluorescence recovery after photobleach 
(FRAP) tests (11). Similar results were 
obtained with diIC,,. The bilayer compo- 
nent of the membrane responded to the 
deformation as a surface fluid with negli- 
gible change in area per lipid (10). Thus, 
the uniform surface density of lipid (Figs. 
2A and 3A) enabled us to use the lipid 
intensity profiles for normalizing the fluo- 
rescence profiles of protein components 
independent of optical and geometric 
transformations. 

In contrast to the uniform distribution of 
lipid along the aspirated projection of mem- 
brane, labeled components of the underly- 
ing cytoskeleton (8) exhibited strong gradi- 
ents in density down the projection-de- 

creasing toward the cap, although never 
vanishing. Both actin- (Fig. ID) and spec- 
trin-labeled red cell ghosts showed that the 
cytoskeleton deformed smoothly and axi- 
symmetrically over the entire cell. Little 
intensity variation (<lo%) was observed 
over most of the s~herical sector outside the - ~ 

pipette. Incorporation of either fluorescein 
isothiocvanate (FITCI-labeled   rote in 4.1 
or a fluorescein-labeled engineered spec- 
trin-actin-binding domain of protein 4.1 in 
protein 4.1-deficient red cell ghosts gave 
similar patterns. The gradients in network 
density along the projection were relieved 
within seconds after the cell was released 
from aspiration (9), even after repetitive 
cycles of aspiration. The gradients persisted 
without relaxation over periods of 230  
min. Moreover, with increased projection 
length, the relative density of the network 
at the cap continuously decreased (Figs. 2B 
and 3A), demonstrating that spectrin fila- 
ments did not reach maximum extension 
(12). Together, these observations support 

Fig. 2 Intensity sections of image types shown in 
Fg. 1. Density profiles along the projection were 
obtained from intensities integrated across a strip 
of width D bracketing the aspirated membrane 
projection. Thus, the surface area of the hemi- 
spherically capped cylinder illustrated in the image 
was a linear function of position along the axis. 
The small overbar marks the diction-limited 
position of the pipette entrance. (A) FL-PE sec- 
tions superposed from four dierent cells. (B) Flu- 
orescein-phalloidin-labeled actin sections super- 
posed from four dierent cell ghosts. (C) Anti- 
CD59 Fab sections superposed from three dier- 
mt red cells. 
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the perception of the in situ network as a 
cohesive or solidlike structure. 

Consistent with the fractional mobility 
detected by FRAP (1 3), our FIMD measure- 
ments of band 3 in intact cells (7) show 
density maps between those of the labeled 
cytoskeleton and the labeled bilayer (Fig. 
4A). As with the labeled cytoskeleton, the 
band 3 madient ~ersisted for more than 30 
min andv was reieved on release from the 
pipette. Like the response of band 3, Fab 
labeling of glycophorin C on normal cells 
showed a decreasing density toward the cap 
(Fig. 4B), consistent with the proposal that 
this transmembrane glycoprotein and pro- 
tein 4.1 form a link between the bilaver and - ,  
the underlying cytoskeleton (14). 

A different resmnse was seen with mem- 
brane proteins not coupled directly to the 
cytoskeleton (7). The glycosylphosphatidyl- 
inositol-anchored protein CD59 (which 
lacks a transmembrane domain) concen- 
trated progressively toward the tip of the 
projection (Figs. 1E and 2C). Two other 

2.0 
Entrance density 

Cap density -.-.- Linid densitv 

Fig. 3. FIMD measurements of actin density at the 
entrance @J and cap (FJ as a function of projec- 
tion length. Only data with entrance and cap den- 
sities within 1.3 SD of binned averages, account- 
ing for 70% of the cells tested, are shown. (A) 
Correlation of labeled actin densities with model 
parameters. The results for FL-PE lipid densitv 
&ong the projection are represented by averages 
of values taken at the midpoints of proiections on 
>50 aspirated cells; the.error b&s represent a 
10% coefficient of variation for the lipid profiles. (B) 
Predictions of the elastic deformation model for n 
= 1 and various values of network dilation modu- 
ludshear modulus (Wk) in relation to entrance: 
cap density ratio. 

mobile surface markers-a Texas red-la- 
beled antibody bound to the fluorescein 
head group of FL-PE, as well as Fab-labeled 
glycophorin C on protein 4.1-deficient 
cells (Fig. 4B)--showed the same behavior. 
These countergradients in density of mobile 
surface components along the projection 
suggest that steric exclusion between the 
mobile species and large (1, 5), dense cy- 
toskeleton-linked species (such as band 3) 
results in component segregation (15). Un- 
der extreme aspiration, the tip of the aspi- 
rated projection could be forced to vesicu- 
late from the cell body (which then re- 
sealed). The resulting vesicle was enriched 
severalfold in the uncoupled proteins and 
depleted of both band 3 and cytoskeletal 
comDonents. consistent with the com~osi- 
tion of red cell vesicles shed as a result of 
either Ca2+-induced vesiculation. de~le- , . 
tion of adenosine triphosphate, treatment 
with dimyristylphosphatidylcholine, or 
even long-term storage of blood (1 6). Sim- 
ilarly, the glycophorin C content of protein 
4.1-deficient cells is reduced to one-third 
to one-tenth that of normal cells (14). 

The red cell membrane skeleton thus 
supports large density gradients for protract- 
ed ~eriods. This solidlike behavior resem- 
bles' that of a cross-linked network of short 
polymer chains. Thus, with the application 
of theories for surface-grafted polymers (1 7) 
and building on earlier studies in red cell 
membrane mechanics (2, 18), we have de- 

0 Band 3 

: 000 

Fig. A Comparison of entrance:cap surface den- 
sity ratios versus projection length. (A) Actin in 
ghosts, band 3 in both ghosts and intact cells, and 
CD59 on intact cells. (B) Glycophorin C on both 
normal (A and upper inset image) and protein 
4.1-deficient (A and lower inset image) red cells. 

veloped a parsimonious general model for 
cytoskeletal network elasticity (19). The 
model is based on the energetics of spectrin 
chain entropy restrictions and excluded 
volume interactions between network con- 
stituents. Given these actions, the least 
complicated form for the elastic energy den- 
sity En, (energylarea) is a sum of simple 
functions in both the local surface density 
and the surface shear: 

En,, = (K/2)[l/p2 + (2/n)pn1 

The geometric stretch ratios XI = Ll/Lo and 
A, = L2/b  and relative surface density p = 
1/XlX2 specify the deformation of a square 
element X Lo into a rectangle L1 X Lz. 
The terms'in the energy represent entropy 
restrictions on chains tethered to the bilay- 
er (-l/p2), resistance to mass and charge 
condensation (-pn; n > O), and reduction 
in chain entropy by stretch (-XI2 + A;). 
For ~ressurization of a red cell discocvte 
into a well-defined axisymmetric form, de- 
formations are completely represented by 
the spatial dependence of the relative den- 
sity field, p. Two important features char- 
acterize numerical predictions of minimum 
elastic energy with En,, given the geomet- 
ric data for pipette size, cell volume, cell 
area, and initial cell shape (20). (i) The 
gradient in density along the projection is 
determined principally by the ratio K/p, of 
network dilation to shear elasticities. (ii) , . 
Increasing the excluded volume exponent 
n suppresses both the density variations 
over the spherical segment of the cell 
outside the pipette and the rise in network 
density near the pipette entrance. On the 
basis of predicted density distributions, 
correlations (Fig. 3) with FIMD measure- 
ments of entrance and cap densities, pe 
and p, (or their ratio 6 Jp,), yield elastic 
parameters for the hidden red cell skeleton 
given by K/p, of -2:l and 1 5 n < 2. 
These values are quantitatively consistent 
with results from Monte Carlo simulations 
of a discretized cytoskeletal model that 
incorporates the three microscopic actions 
represented in E,, (21). The values (K > 
p, and n > 0) are also consistent with the 
observed elastic resilience and shape sta- 
bility of the red cell. 

The FIMD method has demonstrated 
how a composite cell membrane with both 
fluid and solid components markedly redis- 
tributes these components in a passive man- 
ner in order to bear mechanical loads. Fur- 
thermore, complementary responses of cy- 
toskeletally connected transbilayer proteins 
and bilayer-anchored proteins expose differ- 
ent mechanisms by which membrane pro- 
teins can be segregated over the surface as a 
consequence of cytoskeletal deformation. 
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lden tif ication of Two GTP-Binding Proteins in the 
Chloroplast Protein Import Machinery 

Felix Kessler, Giinter Blobel, Hitesh A. Patel, Danny J. Schnell* 

Two of four proteins that associated with translocation intermediates during protein import 
across the outer chloroplast envelope membrane were identified as guanosine triphos- 
phate (GTP)-binding proteins. Both proteins are integral membrane proteins of the outer 
chloroplast membrane, and both are partially exposed on the chloroplast surface where 
they were accessible to thermolysin digestion. Engagement of the outer membrane's 
import machinery by an import substrate was inhibited by slowly hydrolyzable or non- 
hydrolyzable GTP analogs. Thus, these GTP-binding proteins may function in protein 
import into chloroplasts. 

A t  least six distinct chloroplast envelope 
proteins are specifically engaged by a pro- 
tein import substrate during its transloca- 
tion across the two membranes of the en- 
velope in an in vitro chloroplast import 
system ( 1 ) .  These proteins, referred to as 
IAPs (import intermediate-associated pro- 
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teins), coisolated specifically and in appar- 
ently stoichiometric amounts with tagged 
import intermediates after detergent solubi- 
lization of an envelope subfraction of chlo- 
roplasts. A subset of four of these IAPs, 
referred to as early IAPs, are specifically 
engaged by early import intermediates and, 
therefore, are proposed to represent compo- 
nents of the outer membrane (OM) import 
machinery ( I  ). 

We have characterized two of these early 
IAPs, IAP34 and IAP86. These two pro- 
teins are indeed integral proteins of the 
outer chloroplast membrane, and both pro- 
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