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Temperature and Water Viscosity: Physiological 
Versus Mechanical Effects on Suspension Feeding 

Robert D. Podolsky 
Water viscosky is inversely related to temperature. This simple physical relation couples 
two potential influences on organism performance. Seawater viscosity was manipulated, 
with and without temperature, to distinguish the physiological and mechaniczal effects of 
temperature on suspension feeding by ciliated echinoderm larvae. Change in viscosity 
alone accounted for half of the decline in the feeding rate at lower temperature-High 
viscosity shifted ingestion toward larger particles, which suggests that viscosity affects 
particle capture as well as rates of water processing. Temperature-induced change in 
viscosity, therefore, impacts suspension feeding independently of physiology and has 
implications for many small-scale biological processes. 

Understanding the effects of temperature dependent processes that underlie perfor- 
on biological activity and adaptation (1) mance. Thermal biology has focused on 
requires the discrimination of temperature- physiological (biochemical) processes (Z), 

but temperature can impact mechanical 
Department of Zoology, University of Washington, 
Seattle, WA.98195, and Friday Harbor Laboratories, processes as influencing the viscos- 
Friday Harbor, WA 98250, USA. ity (p,) of the ambient fluid (Fig. 1) (3). 
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Such effects of temperature are potentially 
confounding for processes at a hydrody- 
namic scale where viscous forces dominate 
motion (4). For example, capture mecha- 
nisms involved in suspension feeding, 
which is commonly used by aquatic ani- 
mals, depend on the viscous properties of 
water (5-7). Cilia, flagella, or setae are 
used to generate feeding currents and to 
capture particles, processes that may both 
be sensitive to tem~erature-induced vis- 
cosity change (8). However, the indepen- 
dent effects of temuerature and fluid vis- 
cosity on feeding performance have not 
been measured experimentally. 

The viscosity of seawater can be adjusted 
independently of temperature through the . 
addition of high molecular weight polymers 
(9). I used this technique to separate tem- 
perature's mechanical and physiological ef- 
fects on suspension feeding by planktonic 
larvae of the sand dollar Dendraster excen- 
tricus. Larvae generate water currents and 
collect food on a ciliated band that borders 
the larval arms. Most particles are captured 
through the reversal of ciliary beat on lo- 
calized regions of the band where particles 
are detected (10). Viscous forces dominate 
the motion of cilia (4, 11). By manipulat- 
ing viscosity, it was possible to estimate the 

total effect of temperature on feeding in two 
steps: one that measures the effect of the 
viscosity change alone and one that mea- 
sures the effects of temperature (Fig. l). 

To estimate feeding rates (12), I mea- 
sured the accumulation of particles (1 3) in 
the guts of larvae during 10-min feeding 
trials. Six treatments were used to test for 
the effects of temperature, viscosity, viscos- 
ity acclimation, and polymer toxicity (Fig. 
1) (14). (i) To measure the effect of viscos- 
ity alone, larvae were fed at a common 
temperature (22"C), with the viscosity 
adjusted from that characteristic of seawater 
at 22°C ( y  = 1.02 cP, treatment A) to 
those characteristic of seawater at 12°C (y  
= 1.30 cP, treatment B) and at 5°C (p, = 
1.60 cP, treatment C) (15). (ii) To mea- 
sure the combined effects of low tempera- 
ture and high viscosity, larvae were fed at 
12°C (treatment D) . A comparison of treat- 
ments A and B delimits the effect of in- 
creased viscosity, whereas a comparison of 
B and D delimits other effects of tempera- 
ture (Fig. 1). (iii) To test for short-term 
acclimation to high viscosity, treatment E 
differed from B in that the acclimation 
conditions included viscosity elevated to 
match the feeding conditions. (iv) To test 
for toxic effects of exposure to the polymer, 

and F, acclimation to the feeding 
temperature was done at the vis- 

Fig. 1. Summary of seawater con- 1.9- 
ditions in six treatments (A to F). 
The curved line shows the relation 
between temperature and viscos- 
ity for 30 per mil seawater (3). The 
position of each letter or pair rep- 5 I.$ 
resents a combination of temper- 
ature and viscosity conditions un- 8 1.3- der which feeding was measured. .- 
Arrows show how an intermediate > . 

treatment (B) separates effects of 1.1- 
viscosity (B versus A) from other 
effects of temperature (B versus 

0.9- D). In A to D ,  3-hour acclimation 

Temperature ( O C )  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  \ C 

. . .  

D\r 
A F  \ 

cosity of 12°C seawater. Viscosities were increased through the addition of dextran (13). 

to the feeding temperature was ! 1 
0 

5 
done in untreated seawater. In E I b  l2 :O 22 30 

Table 1. Mean number of particles (k1 SE) ingested per 10-min trial under different combinations 
of feeding viscosity and temperature. Data are pooled across rearing temperatures (N = 32). For 
reference, treatments (in parentheses) are positioned to correspond with those in Fig. 1 .  Before 
each trial, larvae were acclimated for 3 hours to the feeding temperature and to the normal viscosity 
for that temperature, except for the treatments listed in the second 22°C column, in which 
acclimation was carried out at an elevated viscosity of 1.30 cP. At feeding viscosities of 1.60, 1.30, 
and 1.02 cP the temperatures are normally 5", 12", and 22"C, respectively. The ANOVA showed a 
significant effect of treatment [F(,,,,, = 39.0, P  < 0.0011. Of the five a priori pair-wise comparisons 
(17), three were significant (A > B > C and D ,  P  < 0.01) and two were not (E and B, A and F). 

Feeding Feeding temperature ("C) 
viscosity 

(cP) 12 22 22 

1.60 15.3 k 1.6 (C) 
1.30 14.0 2 1.9 (D) 25.3 2 2.2 (B) 22.9 k 2.2 (E) 
1.02 42.7 k 4.6 (A) 43.1 ? 4.2 (F) 

in treatment F larvae were held in polymer 
solution for 3 hours before feeding in un- 
treated seawater as in treatment A. To test 
for long-term feeding compensation in re- 
sponse to rearing conditions, the procedure 
was replicated for 16 cohorts reared at warm 
temperatures (20" to 22°C) and for 16 
cohorts reared at cold temperatures (1 1" to 
13°C) (16, 17). 

Larvae were fed a mixture of particle sizes 
(13) to test whether viscosity could influ- 
ence the size of particles ingested. Recogniz- 
ing the mechanism of ciliary reversal used in 
particle capture, I predicted that high vis- 
cositv mieht increase the detection of small- , - 
er particles that would be less likely to trigger 
reversal (18). which would shift the distri- , . 
bution of ingested particles toward smaller 
sizes. This hypothesis was prompted by the 
observation (1 9) that polar echinoderm lar- 
vae fed on bacteria, whereas related temper- 
ate species took only larger phytoplankton. 

In untreated seawater, ingestion rate 
declined on average by 67% when temper- 
ature was reduced by 10°C (Table 1, A and 
D); this difference potentially includes both 
physiological and mechanical effects. The 
viscosity change alone (Table 1, A and B) 
was sufficient to account for 60.6% of this 
difference, which leaves 39.4% attributable 
to other effects of temperature (Table 1, B 
and D) (20). The ingestion rate declined 
further when viscosity was increased to that 
of seawater at 5°C (Table 1, A to C). 
Three-hour exposure to the polymer before 
feeding had no positive effect on ingestion, 
which would have been consistent with 
viscosity acclimation (B and E), nor a 
negative effect, which would have indicat- 
ed toxicity (A and F). 

Treatment 

Fig. 2. Effect of rearing temperature on mean 
number of particles ingested per 10-min trial. 
Treatments are as indicated in Fig. 1 .  The 
ANOVA (15) showed that ingestion rates for 
cold-reared larvae (solid bars) were significant- 
ly higher than those for warm-reared larvae 
(hatched bars; t = 1.92, df = 30, P =  0.032; the 
rearing temperature by treatment interaction 
was not significant). The numbers on bars 
indicate groups used in two comparisons de- 
scribed in the text. Comparison 1 : t,, = 2.96, P 
= 0.006. Comparison 2: t ,, = 1.40, P  = 0.1 7. 
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Within each treatment, larvae that were 
reared at cold temperatures fed at greater 
rates than those reared at warm tempera- 
tures (Fig. 2). Nevertheless, temperature 
compensation (21) for feeding was not 
complete: At their respective rearing tem- 
oeratures. cold-reared larvae fed at lower 
rates than did warm-reared larvae (Fig. 2, 
comparison 1). Relative proportions of in- 
gested particle sizes changed regularly as 
viscosity increased (Fig. 3). Contrary to the 
prediction, at higher viscosities the ratio of 
large (10-p,m) particles increased signifi- 
cantly relative to smaller (2- and 5-ym) 
particles. Thus, hydromechanical factors 
alone do not explain the ingestion of small- 
er particles in polar waters; in fact, they 
appear to bias against it (22). 

The physical properties of water are 
considered to olav a maior role in the 

& ,  

evolution of aquatic feeding mechanisms 
(5-7). The results here support the hypoth- 
esis that mechanical effects of viscosity 
account for a large portion of the effects of 
temperature on feeding performance. Over 
the viscosity increase associated with a 
change from 22" to 12"C, the ingestion rate 
declined by 41%, whereas water movement 
by cilia of tethered larvae declined by only 
19% (1 1). Thus, changes in viscosity affect 
not only rates of water processing but also 
the detection or capture of particles. 

Effects on detection and caoture are 
further supported by the shift in the size 
distribution of ingested uarticles. Size selec- ., 
tivity by planktivores commonly involves 
active discrimination or oassive ohvsical 

& ,  

mechanisms that depend on characteristics 
of predators and prey (23). The results here 
suggest that physical characteristics of the 
fluid environment are sufficient to bias the 
size of particles taken. By affecting the 
steepness of velocity gradients, changes in 
viscosity could also influence particle selec- 

Particle size ( ~ m )  

Fig. 3. Proportion of particles of different size 
ingested by larvae under increasing viscosity at 
constant temperature (22°C): open bars, 1.02 
cP; hatched bars, 1.30 cP: solid bars, 1.60 cP. 
The proportion of 10-pm particles differed sig- 
nificantly among viscosity levels [F(,,,,, = 31.6, 
P < 0.001; the rearing temperature was not 
significant]. Proportions were arcsine square 
root-transformed before analysis. 

tion by altering retention efficiencies on 
filters (5-7, 24) and concentrations of 
chemical stimulants around food particles 
(23, 25). . .  , 

By influencing exposure to planktonic 
mortality, growth rate through the larval 
period is a key variable in aquatic life 
histories (26). The mechanical and physi- 
ological effects of cold temperature on feed- 
ing likely lead to slower growth, though 
only when food availability limits growth 
rate (27). Feeding rates on microalgae are 
several times greater for temperate asteroid 
larvae than for polar relatives (28). Such 
effects on feeding could be one of several - 
factors promoting a shift from feeding to 
nonfeeding larval development at higher 
latitudes (29). 

Do larvae respond adaptively to the 
mechanical, as opposed to the physiologi- 
cal, challenges of temperature (30)? Feed- 
ing rate did not respond to a short (3-hour) 
exposure to high viscosity but did increase 
after development under chronic condi- 
tions of low temperature and high viscosity. 
The partial feeding compensation exhibited 
by larvae (Fig. 2, comparison 1) suggested 
that mechanical factors might limit the 
effectiveness of a physiological response 
(21, 31). To examine this hypothesis, I 
compared two groups of larvae feeding at 
their respective rearing temperatures but at 
a common (high) viscosity (Fig. 2, compar- 
ison 2). No significant difference in feeding 
rate between grouos is consistent with the 

u .  

ability of larvae to show compensati.on that 
is more physiological than mechanical 
(32). 

Given the similarities between susoensibn 
feeding and other processes involving contact 
between small particles, temperature-induced 
viscosity change likely impacts a range of 
biological processes at small scales, including 
the uptake of particulate and dissolved nutri- 
ents (5-7, 33), fertilization kinetics (34), viral 
transmission (35), and the sinking and aggre- 
gation of bacteria, phytoplankton, and other 
susoended material (36). Such considerations ~, 

can suggest new empirical and theoretical 
amroaches to biomechanical evolution. the . . 
dynamics and organization 'of plankionic 
comunities. and material and enerm flow 
through aquatic systems. The biological ef- 
fects of viscosity may prove to be especially 
important in freshwater systems that are small 
in size and subject to large temperature fluc- 
tuation. To distinguish such effects is critical 
for an understanding of the ecological and 
evolutionary responses of organisms to tem- 
perature variation on local and geographic 
scales. 
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Deletion of a DNA Polymerase P Gene Segment in 
T Cells Using Cell Typespecific Gene Targeting 
Hua Gu,* Jamey D. Marth, Paul C. Orban, Horst Mossmann, 

Klaus Rajewsky 
Deletion of the promoter and the first exon of the DNA polymerase p gene (polp) in the 
mouse germ line results in a lethal phenotype. With the use of the bacteriophage-derived, 
site-specific recombinase Cre in a transgenic approach, the same mutation can be se- 
lectively introduced into a particular cellular compartment-in this case, T cells. The impact 
of the mutation on those cells can then be analyzed because the mutant animals ave viable. 

G e n e  targeting in embryonic stem (ES) 
cells provides a powerful tool for generating 
mice carrying predesigned mutations in the 
germ line ( I ) .  Current approaches to gene 
inactivation usually involve the introduc- 
tion of a null mutation directly into ES cells 
from which homozygous mutant mice can 
be generated. Because the null mutation is 
carried in the germ line of the mutant 
animals, it will exert its effects from the 
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onset of animal development. Although 
this approach to gene inactivation is valu- 
able, for many applications it is important 
that the inactivation of a particular gene 
occurs in a ~onditiond~manner-for in- 
stance, in a predefined cell lineage or at a 
certain stage of development- Such condi- 
tional gene targeting would not only over- 
come problems posed by the fact that null. 
mutations in the germ line are often lethal, 
but would also allow a more precise analysis 
of the impact of a mutation on individlial 
cell lineages. 

Somatic gene rearrangement and hyper- 
mutation at lymphocyte antigen receptor 
gene loci are unique events that require 
DNA repair (2, 3). The polp gene has been 
shown to be one of various enzymes in- 
volved in the DNA repair machinery (4). 
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