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Disruption of PDGF Receptor Trafficking by 
Mutation of Its PI-3 Kinase Binding Sites 
Marguerite Joly, Andrius Kazlauskas, Fredric S. Fay, 

Silvia Corvera* 
Human platelet-derived growth factor receptors (PDGFRs) expressed in human Hep 6 2  
cells internalized and concentrated in a juxtanuclear region near the Golgi network within 
10 minutes after the cells were treated with PDGF. A PDGFR mutant (F5) that lacks 
high-affinity binding sites for the Src homology 2 domain-containing proteins phosphati- 
dylinositol-3 kinase (PI-3 kinase), Ras guanosine triphosphatase activating protein, phos- 
pholipase C-y, and a phosphotyrosine phosphatase (Syp) remained at the cell periphery. 
Restoration of the PI-3 kinase binding sites on F5 completely restored the ability of the 
receptor to concentrate intracellularly. A PDGFR mutant lacking only PI-3 kinase binding 
sites failed to concentrate intracellularly. Thus, PI-3 kinase binding sites appear both 
necessary and sufficient for the normal endocytic trafficking of the activated PDGFR. 

Activation of receptor tyrosine kinases ini- 
tiates intracellular signaling pathways that 
regulate cellular growth and development 
(1) .  Activated receptors rapidly internalize, 
leading to the degradation of the ligand, 
the receptor, or both (2). Internalization of 
receptor tyrosine kinases is likely to be an 
important mechanism for securing tight 
control of cellular growth and proliferation. 
Important differences exist between the in- 
ternalization of receptor tyrosine kinases 
and that of receotors for macromolecular 
nutrients such as low density lipoproteins 
and transferrin. The latter internalize and 
recycle constitutively, but receptor tyrosine 
kinases internalize only when activated by 
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ligand (2). Ligand binding induces auto- 
phosphorylation on tyrosines of the recep- 
tor cytoplasmic domain and its association 
with signaling proteins that contain Src 
homology 2 domains. These include phos- 
pholipase C-y (PLC-y), the guanosine tri- 
phosphatase activating protein for Ras 
(GAP), the 65-kD phosphotyrosine phos- 
phatase (Syp), nonreceptor tyrosine kinases 
( 3 ) ,  and PI-3 kinase (4). This enzyme 
catalyzes the phosphorylation of phospha- 
tidylinositol (PIns) , PIns (4) P, and 
PIns(4,5)P2 at the 3' position of the inosi- 
to1 ring, but the biological functions of 
these lipids are not known. 

We tested the hypothesis that the traf- 
ficking of receptor tyrosine kinases is driven 
by the regulatory proteins that are recruited 
to the autophosphorylated cytoplasmic do- 
main. The activated PDGFR binds to a 
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mutant receptors that lack high-affinity 
binding -sites for regulatory proteins (7). 
The F5 mutant is a receptor in which 
Tyr740, Tyr7", Tyr771, TV1OOg, and TyrlOZ1 
are substituted with phenylalanine and is 
deficient in the binding of PI-3 kinase, 
PLC-y, GAP, and Syp (8). A receptor 
restored in the high-affinity binding of PI-3 
kinase (Tyr40,51) was generated by mutation 
of Phe740 and Phe751 in F5 back to tyrosine. 
A receptor exclusively deficient in the 
binding of PI-3 kinase (Phea*'') was con- 
structed by substituting Tyr740 and Tyr751 
with phenylalanine (9). Each construct was 
introduced into human Hep G2 cells, 
which do not express endogenous f3- 
PDGFRs, with the pLXSN retroviral ex- 
pression vector (8). All constructs were 
expressed at approximately 5 x 10' recep- 
tors per cell (8) and were activated by 
ligand (10) (Fig. 1). 

To monitor the intracellular trafficking 
of the receptor, we used a monoclonal 
antibody that binds to the exofacial domain 
of the human f3-PDGFR but does not block 
the activation of the receptor by PDGF and 
does not induce receptor down-regulation 
(Fig. 2) (1 1, 12). A punctate uniform 
pattern of fluorescence was observed on the 
plasma membrane of cells held at 5°C (Fig. 
2). Upon incubation for 10 min at 37"C, 
the antibody appeared to internalize and 

A PI-3 kinase GAP PTP PLC-y 
740 751 771 1009 1021 

-m 
- 0(\-b\-m F5 

F 0 w-! ~40 .51  

4-i-M ~ 4 0 ~ 5 1  

Flg. 1. Mutant constructs of the PDGFR. (A) 
Closed circles represent the tyrosine (Y) resi- 
dues in the human p-PDGFR cytoplasmic do- 
main. The proteins that bind to these sites are 
indicated above the residue number. Open 
circles represent tyrosine to phenylalanine (F) 
substitutions. WT, wild type; PTP, protein tyro- 
sine phosphatase. (B) PDGFRs were immuno- 
precipitated from cells treated with buffer (-) or 
PDGF (+) (20 ng/ml) for 10 min at 37°C and 
immunoblotted with a monoclonal antibody to 
phosphotyrosine. The arrow indicates the ex- 
pected molecular size of the receptor. Molecu- 
lar size markers are indicated to the right in 
kilodaltons. 

concentrate in a juxtanuclear region (Fig. 
2) .  luxtanuclear concentration of the anti- 
bbd; was not observed in cells that ex- 
pressed the F5 mutant receptor, which ap- 
peared to remain at the cell periphery (Fig. 
2). Restoration of the PI-3 kinase binding 
sites restored the concentration of the re- 
ceptor in the juxtanuclear region (Fig. 2). 
To determine whether binding sites other 
than those for PI-3 kinase can also modu- 
late receptor trafficking, we analyzed the 
cellular localization of receptors deficient 
only in high-afhnity binding sites for PI-3 
kinase. The staining pattern observed with 
this mutant resembled that observed with 
F5 (Fig. 2). 

To localize the juxtanuclear region in 
which the antibodv concentrated. we dou- 
ble stained cells Ath  Lens &ris lectin 
(12), which marks internal secretory com- 
partments, predominantly the Golgi appa- 

nin: 

ratus. To improve image resolution, we 
analyzed individual cells by optical section- 
ing and image reconstruction (1 3). Wild- 
type or Tyra7'l mutant receptors concen- 
trated in the region of maximal lectin stain- 
ing, but the staining patterns were distinct- 
ly different (Fig. 3). In cells expressing the 
F5 or Phe*p51 mutants, no antibody was 
found concentrated in this region. Thus, 
tyrosine phosphorylation of residues 740 
and 751 appears to be both necessary and 
sufficient to target the activated receptor 
from the plasma membrane to a compart- 
ment close to the Golgi apparatus. 

To address the possibility that the ob- 
served targeting of the PDGFR might be 
artificially induced by the antibody to the 
exofacial domain, we treated cells with 
PDGF only and fixed and stained them with 
a PDGFR polyclonal antibody to the cyto- 
plasmic domain (Fig. 4). The signal was 

Flg. 2. Internalization of antibody to the PDGFR. Cells that expressed various receptors (indicated 
at the top) were incubated simultaneously with PDGF (20 nglml) and monoclonal antibody to the 
PDGFR (5 Mml) for 70 min at 5"C, washed with DMEM at 5OC, and then incubated for 10 min at 5°C 
to prevent endocytosis (top panels, 0 min of internalization) or at 37°C to allow endocytosis (lower 
panels, 10 min of internalization). Antibody was visualized with goat antibodies to mouse IgG 
coupled to rhodamine. Arrowheads indicate the boundary of randomly selected cells. Arrows 
indicate the region where the wild-type and receptors concentrate. Bars, 10 km. 

Flg. 3. Simultaneous WT F5 ~ 4 0 . 5 1  ~ 4 0 . 5 1  

with goat antibodies to 
mouse IgG coupled to 
rhodamine and with 

ty-five serial Wimen-  

Lens culinaris lectin t 
coupled to FITC. Twen- A 
sional images were r e  
corded at 0.25-krn intervals with a charged-coupled device camera (Photornetrics). The blurring of 
fluorescence from regions above and below the plane of focus was reversed (13). Shown is the sum 
of 10 optical sections that contained the maximal lectin fluorescence intensity (arrows). The 
corresponding region in the rhodamine images is shown in the upper panels (arrowheads). Bars, 10 
wm. 
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dase ly  distributed on the plasma mem- 
brane of cells maintained at 5°C (Fig. 4) 
but was concentrated in the juxtanuclear 
region of cells that expressed wild-type or 
Tfl.51 mutant receptors after 10 and 20 
min of warming. These results indicate that 
the juxtanuclear concentration of receptors 
was not induced by the exofacial domain 
antibodv. 

T; &tennine the degree to which recep 
tor mutants progressed in the endocytic 
pathway, we measured the amount of 
bound antibody remaining accessible to the 
extracellular space after 10 min of internal- 
ization. Approximately 75% of bound anti- 
body was released by acid washing from 
cells expressing the F5 and Phe*." mutant 
receptors, and approximately 30% was re- 
leased from cells expressing the wild-type 
receptor or the TY#''*~' mutant. Thus, the 
lack of PI-3 kinase binding sites appears to 
afFect receptor &cking in the early steps 
of the endocytic pathway (1 4). 

The failure of the receptors to progress 
through the endocytic pathway was also 
reflected by a decrease in the rate of PDGF- 
induced receptor degradation of the F5 and 
Phe*s5' mutants. The restoration of PI-3 
kinase binding sites restored rapid PDGF- 
induced degradation (Fig. 5). It has recent- 
ly been shown that one of the PI-3 kinase 
binding sites, Tyr751, can also bind the 
SHZ-SH3-containing protein Nck (1 5). 
The extent of Nck binding to the receptor 
in vivo, relative to PI-3 kinase, is not 
known, but it is possible that receptor 
trafficking may be influenced by PI-3 ki- 
nase, Nck, or both. 

The cloning of the catalytic subunit of 
PI-3 kinase revealed an unexpected simi- 
larity to a yeast protein, Vps34p (16). 
which plays a critical role in the delivery 
of newly synthesized proteins to the yeast 
vacuole (1 7). The high degree of similar- 
ity between Vps34p and PI-3 kinase sug- 
gests that both enzymes could fulfill similar 

- 
Cem analysis of 
PDGFRs. Cells were in- 
cubated with PDGF (20 
nglml) for 70 min at 5°C. 
washed, incubated at 
37T for the time indicat- 
ed on the left, fied, and 
stained with a polyclonal 
antibody to the cytoplas- 
mic domain of the 
PDGFR and goat anti- 
bodies to rabbit IgG 
coupled to FITC. Amrw- 
heads point to the region 
of concentration of the 
wild-type and Ty'Q5' 
receptors. Bars, 10 pm. 

nln at 37% 

0 

Flg. 5. Degradation of PDGFRs. Cells express- - 
ing the wild-type (O), F5 (O), TyPs5I (A), or 120 - 
Phe4Oe5I (0) receptors were incubated with 
methionine-free DMEM containing [35S]methio- 
nine (100 pCi/ml; Arnersham) for 3 hours and 100- 
then for 30 min in DMEM containing bovine 
serum albumin (1%) and methionine (0.3 mg/ 
ml). Cells were then incubated without or with ": PDGF (30 nglml) for the times indicated. Fluo- '6 rograms of receptor irnrnunoprecipitates re- 
solved by SDS-polyacrylarnide gel electropho- 80 ' 
resis were scanned with a laser densitometer, f 
The intensity of the mature receptor (190 kD) g 
from PDGF-treated cells was expressed as 40 : 
the percent of the intensity of the receptor 
from corresponding nontreated cells. All re- 
ceptor constructs had a half-life of approxi- 

20- 

mately 3 hours in the absence of PDGF. Each 
point represents the mean of four (wild-type, 0 . - - - . - I - - - - - I - - - - . ~ . - . - . I  . .  
F5, and Tyr"O.S1) or two (Phe40-51) independent 0 30 80 90 120 
experiments. 

Time (mln) 
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functions. We propose that PI-3 kinase 
mediates growth factor receptor trafficking 
in the endocytic pathway and that the 
sorting function of this enzyme has been 
conserved from yeast to mammals. 
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Nitric Oxide Activation of Poly(ADP-Ribose) 
Synthetase in Neurotoxicity 

Jie Zhang, Valina L. Dawson, Ted M. Dawson, 
Solomon H. Snyder* 

Poly(adenosine 5'-diphosphoribose) synthetase (PARS) is a nuclear enzyme which, when 
activated by DNA strand breaks, adds up to 100 adenosine 5'-diphosphoribose (ADP- 
ribose) units to nuclear proteins such as histones and PARS itself. This activation can lead 
to cell death through depletion of p-nicotinamide adenine dinucleotide (the source of 
ADP-ribose) and adenosine triphosphate. Nitric oxide (NO) stimulated ADP-ribosylation of 
PARS in rat brain. Benzamide and other derivatives, which inhibit PARS, blocked Mmethyl- 
D-aspartate- and NO-mediated neurotoxicity with relative potencies paralleling their ability 
to inhibit PARS. Thus, NO appeared to elicit neurotoxicity by activating PARS. 

Nitric oxide is a messenger molecule that 
regulates macrophage killing of tumor cells 
and bacteria (I) and blood vessel relaxation 
(2) and also is a neurotransmitter (3). 
When produced in large quantities in re- 
sponse to actions of the excitatory neuro- 
transmitter glutamate acting at N-methyl- 
D-aspartate (NMDA) receptors, NO medi- 
ates neuronal killing (4, 5). Toxicity due to 
NMDA may account for neural damage in 
vascular stroke, as NO synthase (NOS) 
inhibitors prevent stroke damage (6). 
Mechanisms proposed for NO neurotoxicity 
as well as tumoricidal and bactericidal ac- 
tions include monoADP-ribosylation and 
S-nitrosylation of glyceraldehyde-3-phos- 
phate dehydrogenase (GAPDH) (7), inhi- 
bition of mitochondria1 enzymes such as 
cis-aconitase (8), inhibition of the mito- 
chondrial electron transport chain (I), in- 
hibition of ribonucleotide reductase (9), 
and DNA damage (1 0, 1 1). DNA damage 
activates PARS (E.C. 2.4.2.30) (12, 13). 
Here we show that NO activates PARS in 
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association with damage to DNA, and that 
PARS inhibitors prevent NMDA neurotox- 
icity with relative potencies paralleling 
their inhibition of the enzyme. 

In rat brain nuclear extracts, PARS 
activity was almost tipled in a dosage- 
dependent manner when DNA that had 
been preincubated with NO was added 
(Fig. 1A) (14); Addition of covalently 
closed circular DNA by itself had no effect 
on PARS activity. Both 4-amino-1,8-naph- 
thalimide and 1,5-dihydroxyisoquinoline, 
two potent PARS inhibitors, reduced the 
activity to <5% of basal levels (Fig. 1A). 
The major protein ADP-ribosylated in the 
nuclear extracts was PARS itself (Fig. 1B). 
Similarly, DNA that had been treated with 
3-morpholinosyndnonimine (SIN-1) and 

sodium nitroprusside (SNP), two NO do- 
nors, could stimulate poly(ADP-ribose) 
synthesis, which was inhibited by benza- 
mide, another PARS inhibitor (14). Nei- 
ther SNP nor SIN-l alone had an effect on 
PARS (14). 

McDonald and Moss have demonstrated 
that NO-enhanced modification of 
GAPDH by p-nicotinamide adenine dinu- 
cleotide (NAD) involves the transfer of the 
entire NAD to a thiol group rather than 
ADP-ribosylation (7). To ensure that the 
polymer formed from NAD in our study was 
poly(ADP-ribose), we used both [ h n e -  
14C]NAD and [nicotimmide-14C]NAD and 
found radioactivity could only be incorpo- 
rated into the polymers from the former 
compound (1 4). 

To directly determine if PARS activa- 
tion participates in NMDA neurotoxicity, 
we monitored neurotoxicity elicited by 
NMDA in rat cerebral cortical cultures in 
which NOS inhibitors provided protection 
(Fig. 2) (4). Increasing concentrations of 
NMDA progressively augmented neuronal 
killing. Benzamide (100 pM) provided 40 
to 50% protection at all NMDA concentra- 
tions examined. At a benzamide concentra- 
tion of 50 pM, there was no significant 
protection detected; but 500 pM benza- 
mide provided -30% more protection than 
100 pM benzamide (Table 1). NO did not 
interact with benzamide (1 5). A variety of 
benzamide derivatives exist with differing 
potencies as PARS inhibitors. In the family 
of benzamide and its derivatives, benzamide 
is the most active, 3-aminobenzamide is 
about 50% as potent and 4-aminobenza- 
mide is 1 to 2% as potent as benzamide, and 
benzoic acid is inactive (1 6). Benzamide 
provided the most protection against 
NMDA neurotoxicity and 3-aminobenza- 
mide exerted somewhat less protection, but 
4-aminobenzamide and benzoic acid did not 
protect at all (Table 1). A structurally 
unrelated PARS inhibitor, 1,5-dihydroxy- 
isoquinoline (10 pM), was also neuropro- 
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Flg. 1. Activation of PARS 
by NO-damaged DNA. (A) 
PARS activity after differ- 
ent treatments (mean & 

SEM, n = 3) (14) .  (B) 
Autoradiography of poly- 
ADP-ribosylation of PARS 
on 7.5% SDS-polyacryl- 
amide gel electrophore- 
sis. Sizes are indicated at 
left in kilodaltons. Abbre- 
viations: AmNAP, 4-ami- 
no-1,8-naphthalimide; 
DHIQ, 1 ,Bdihydroxyiso- 
quinoline. 
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