W. Bauschlicher Jr., S. P. Walch, S. R. Langhoff,
P. R. Taylor, R. L. Jaffe, *ibid.* 88, 1743 (1988); C.
W. Bauschlicher Jr., S. R. Langhoff, T. J. Lee, P.
R. Taylor, *ibid.* 90, 4296 (1989).

J. T. Muckerman, in *Theoretical Chemistry—Advances and Perspectives*, H. Eyring and D. Henderson, Eds. (Academic Press, New York, 1981), vol. 6A, pp. 1–77.

- R. Steckler, D. G. Truhlar, B. C. Garrett, *J. Chem. Phys.* 82, 5499 (1985); T. Takayanagi and S. Sato, *Chem. Phys. Lett.* 144, 191 (1988); G. C. Lynch, R. Steckler, D. W. Schwenke, A. J. C. Varandas, D. G. Truhlar, *J. Chem. Phys.* 94, 7136 (1991).
 J. Z. H. Zhang and W. H. Miller, *J. Chem. Phys.*
- J. Z. H. Zhang and W. H. Miller, J. Chem. Phys. 92, 1811 (1990).
- A. Weaver and D. M. Neumark, Faraday Discuss. Chem. Soc. 91, 5 (1991).
- S. E. Bradforth, D. W. Arnold, D. M. Neumark, D. E. Manolopoulos, *J. Chem. Phys.* 99, 6345 (1993).
 P. J. Knowles, K. Stark, H.-J. Werner, *Chem. Phys.*
- 15. P. J. Knowles, K. Stark, H.-J. Werner, *Chem. Phys. Lett.* **185**, 555 (1991).
- More details about the ab initio calculations underlying the new F + H₂ surface and the functional form used to represent it will be given in a future publication; K. Stark and H.-J. Werner, unpublished results.
- H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988); P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988).
- Chem. Phys. Lett. 145, 514 (1988).
 H.-J. Werner and P. J. Knowles, J. Chem. Phys. 82, 5053 (1985); P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 115, 259 (1985).

- 19. S. R. Langhoff and E. R. Davidson, *Int. J. Quantum Chem.* **8**, 61 (1974).
- J. A. Nichols, R. A. Kendall, S. J. Cole, J. Simons, J. Phys. Chem. 95, 1074 (1991).
- G. C. Schatz, J. Chem. Phys. 90, 3582 (1990); ibid., p. 4847; J. Phys. Chem. 94, 6157 (1990).
- 22. The final electronic wave function that enters the definition of μ_{ff} is an electron scattering wave function that depends on the electron kinetic energy *e*KE and hence by total energy conservation as in Eq. 2 on the neutral photofragment scattering energy *E*.
- 23. G. C. Schatz, *Chem. Phys. Lett.* **150**, 92 (1988).
- D. E. Manolopoulos and D. C. Clary, Ann. Rep. Prog. Chem. Sect. C 86, 95 (1989); W. H. Miller, Annu. Rev. Phys. Chem. 41, 245 (1990); D. G. Truhlar, D. W. Schwenke, D. J. Kouri, J. Phys. Chem. 94, 7346 (1990).
- G. C. Schatz, Annu. Rev. Phys. Chem. 39, 317 (1988); J. Z. H. Zhang and W. H. Miller, Chem. Phys. Lett. 153, 465 (1988).
- 26. We thank J. P. Simons and M. Brouard for helpful discussions. Supported by the U.K. Science and Engineering Research Council, the Deutsche Forschungsgemeinschaft (SFB216), the German Fonds der Chemischen Industrie, and the U.S. Air Force Office of Scientific Research (AFOSR-91-0084). D.M.N. is an NSF Presidential Young Investigator and a Camille and Henry Dreyfus Teacher-Scholar.

11 August 1993; accepted 15 October 1993

Nitrogen-15 and Oxygen-18 Characteristics of Nitrous Oxide: A Global Perspective

K.-R. Kim* and H. Craig

The global budget of N₂O shows a significant imbalance between the known rate of destruction in the stratosphere and the estimated rates of natural and anthropogenic production in soils and the ocean. Measurements of the ¹⁵N/¹⁴N and ¹⁸O/¹⁶O ratios in two major tropospheric sources of N₂O, tropical rain forest soils and fertilized soils, show that soil N₂O from a tropical rain forest in Costa Rica and from sugar-cane fields in Maui is strongly depleted in both ¹⁵N and ¹⁸O relative to mean tropospheric N₂O. A major source of heavy N₂O, enriched in both ¹⁵N and ¹⁸O, must therefore be present to balance the light N₂O from soils. One such source is the back-mixing flux of N₂O from the stratosphere, which is enriched in ¹⁵N and ¹⁸O by photolysis and chemistry. However these return fluxes of ¹⁵N and ¹⁸O are so great that a large oceanic flux of N₂O is required to balance the heavy isotope–enriched stratospheric flux. All these effects will be reflected in climatically related isotopic variations in trapped N₂O in polar ice cores.

Nitrous oxide (N₂O) is an active atmospheric trace gas (tropospheric mixing ratio = 310 ppbv) that is currently increasing in concentration at a rate of ~0.25% per year (1). Various sources both natural and anthropogenic have been identified, but the relative importance of these sources has not yet been established, although it seems clear that tropical forest soils are the primary single source (2, 3). The atmospheric residence time of N₂O relative to destruction by stratospheric pho-

tolysis and chemistry is ~ 150 years, but known and estimated inputs to the atmosphere are only about half of the flux required to balance the calculated destruction rate (4), and reasons for the imbalance are unknown.

Characterization of tropospheric and dissolved oceanic N_2O by the two isotope ratios ${}^{15}N/{}^{14}N$ and ${}^{18}O/{}^{16}O$ provides important constraints on the geochemistry and sources of this gas (5). In this report we extend this approach to a study of N_2O in tropical rain forest soils (6) and in stratospheric air. The ${}^{15}N/{}^{14}N$ and ${}^{18}O/{}^{16}O$ ratios were measured by injecting molecular N_2O directly into the dual-inlet, triple-collecting mass spectrometer

SCIENCE • VOL. 262 • 17 DECEMBER 1993

SAMSON and simultaneously measuring masses 44, 45, and 46 for the ${}^{15}N/{}^{14}N$ and ${}^{18}O/{}^{16}O$ isotope ratios (7).

Soil-gas samples were collected from natural soils in the rain forest of Costa Rica (8, 9) and from fertilizer-treated soils of sugar-cane fields on the island of Maui (10). Air samples were withdrawn from existing soil-flux measurement chambers (11) and returned to La Jolla where the N₂O-air mixing ratios were determined by ECD gas chromatography, and the isotope ratios were measured. Table 1 shows that quasiduplicate samples at one Maui site and at one of the Costa Rican sites agree quite well for both the measured N₂O mixing ratios and the end-member isotopic δ values of the soil N₂O (12).

Figure 1 shows the soil- N_2O isotopic data and the δ values of tropospheric N_2O (5). Although the isotopic values from different soil sites show rather large variations, they are uniformly depleted in the heavy isotopes and isotopically lighter than the tropospheric air and oceanic samples in all cases. On Maui N_2O from the abundant rainfall site is enriched in the heavy isotopes of both N and O relative to N_2O from the dry-side soil. This effect may be due to denitrification in the wet soils, as nitrification in dry soils generally produces isotopically light N_2O (13, 14).

These data show that the isotopic ratios of N_2O emitted from soils in both the natural and fertilized states are significantly depleted in ¹⁵N and ¹⁸O relative to tropospheric N_2O . Thus there must also exist sources of N_2O enriched in the heavy isotopes to balance the input fluxes of light soil-gas N_2O .

One such heavy tropospheric source is the N₂O produced by nitrification in deep ocean water (5): these data are also plotted in Fig. 1. The heavy isotope enrichments in these waters increase with depth, but the deep-water production is not a significant tropospheric source. In contrast to these heavy isotope-enriched samples, the δ values of near-surface dissolved N₂O are quite similar to those of tropospheric N₂O but are slightly depleted in ¹⁵N and ¹⁸O. It is possible that in some oceanic areas of strong regional upwelling such as the Equatorial Eastern Pacific (15) and the northwest Indian Ocean (16), N₂O brought to the surface may have been produced by denitrification (17) and that N₂O produced in this way may be enriched in ¹⁵N (18), and perhaps in ¹⁸O, relative to values for tropospheric air. However the δ values of dissolved N₂O in shallow depths (surface to depths of ~ 800 m) are quite similar to those of tropospheric N_2O [(5), Fig. 1], so that there is a strong buffering effect of subsurface N₂O

Isotope Laboratory, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093–0220.

^{*}Also: Department of Oceanography, Seoul National University, Seoul, 151-742, Korea.

on the isotopic ratios in tropospheric N_2O . It is evident from Fig. 1 that, given the present data for the isotopic composition of N_2O produced by tropical soils, there must exist another tropospheric source that is enriched in both ¹⁵N and ¹⁸O relative to the tropospheric values. The only candidate for such a source appears to be the feedback of stratospheric N_2O , which is enriched in both ¹⁵N and ¹⁸O by photolysis and photochemical reactions.

The measured $\delta^{15}N$ and $\delta^{18}O$ values in N₂O from a high-latitude profile of stratospheric air (19) are indeed highly enriched in both heavy isotopes relative to values of N₂O in tropospheric air (Table 1). Moreover the isotopic data lie on a smooth mixing curve with the δ values of tropospheric N₂O. These data therefore demonstrate that the soil-gas input of ¹⁵Ndepleted and ¹⁸O-depleted N₂O must be at least partially balanced by the return flux into the troposphere of stratospheric N₂O enriched in both heavy isotopes.

The return flux of air from the stratosphere to the troposphere has been evaluated in several ways. Newell (20) estimated this flux as 2.4 Mt/s (1 Mt = 10^9 kg) of air brought down in mid-latitudes through the folded tropopause. More recently, Holton (21) calculated the global balances of upward mass and N₂O fluxes through the tropical tropopause, and the compensating downward fluxes in the extratropical regions, on the basis of dynamics of eddy dissipation above the 100-mbar level. The upward flux of N₂O into the stratosphere, based on the integrated air flux and a tropospheric mixing ratio of 300 ppbv, is 60.5 MtN/y. The downward flux from the stratosphere is obtained by subtract-

Table 1. Nitrogen and oxygen isotope ratios of soil-gas N₂O (end-members) and stratospheric N₂O, as δ values (per mil) relative to atmospheric N₂ and O₂. Average marine tropospheric N₂O [from (5)] is also shown. For Maui samples, W sample is from the wet side and D samples are from the dry side of the island. Location of stratospheric samples is given as height.

Location	Date	N ₂ O (ppb)	$\delta^{15}N$	δ ¹⁸ Ο
Soil-gas N ₂ O				
Maui- W*	12/5/91	670	0.1	19.2
- D1*	12/6/91	1100	-25.0	10.8
- D2*	12/6/91	1220	-22.1	11.0
Costa Rica -JA	11/25/91	1270	-22.5	3.6
-CE1	11/27/91	1340	-7.1	12.3
-CE2	11/27/91	1100	-7.8	9.8
Stratospheric N ₂ O (68°N)				
12.8 km	່ 1/10/8ົ້8	284	^{12.8}	29.1
17.8 km	2/10/88	182	21.1	35.0
Av. trop. N ₂ O	4/83-5/83	~303	7.0	20.7

^{*}Two samples from the same chamber of nearby chambers, combined for the isotope analysis.

ing the destruction rate in the stratosphere (10.5 MtN/y): This flux is then 50 MtN/y, corresponding to a mean mixing ratio in the source region of the downward flux (\sim 16 km) of \sim 245 ppbv.

In Fig. 2 we show the approximate isotopic signature of N_2O from this source region interpolated on the curve between the two measured stratospheric samples and the mean value of tropospheric air: $\delta^{15}N = +15$ per mil and $\delta^{18}O = +30.7$ per mil. The vector from this point to a crudely estimated mean soil-gas isotopic composition is also shown. There are two points to be noted:

The steady-state tropospheric isotopic flux balance is:

$$\Sigma J_i \Delta_i + F_{st} \Delta_{st} = 0 \tag{1}$$

where $\Delta_i = (\delta_i - \delta_t)$, subscript *i* refers to a tropospheric source (soil-gas, oceanic production, and so forth), and subscript t denotes the tropospheric isotope ratios. Similarly $\Delta_{st} = (\delta_{st} - \delta_t)$, where the subscript st refers to an isotope ratio in N₂O at the source level for the stratospheric return flux. J is a tropospheric source, F is a mass flux of N_2O , and Eq. 1 describes the mass balance for either heavy isotope. The F Δ and J Δ terms are thus isotopic flux terms [with units of (megatons of N per mil) per year (MtN‰/y)]. From the Δ_{st} values for the estimated stratospheric and tropospheric δ values we see that the F Δ terms are approximately +400 and +500 MtN‰/y, respectively,

Fig. 1. ¹⁵N/¹⁴N and ¹⁸O/¹⁶O ratios (as δ values relative to atmospheric N₂ and O₂) in N₂O from soil gases on Maui and in a Costa Rican rain forest, compared with the isotopic composition of tropospheric N₂O (*5*). Also shown are the isotopic data on dissolved N₂O in the oceans (*5*): In these data the δ values for both N and O increase with depth to the bottom (~4000 m), and the near-subsurface waters (surface to ~800 m) are slightly lower in ¹⁵N/¹⁴N and ¹⁸O/¹⁶O ratios than tropospheric N₂O. W, CE, JA, and D delineate data from several sites (Table 1, *8, 10*).

SCIENCE • VOL. 262 • 17 DECEMBER 1993

for ¹⁵N and ¹⁸O. These terms are exceedingly large compared to the $J\Delta$ terms for soil gas, which from the adopted mean values (Fig. 2), and setting $J \approx 4 \text{ MtN/y}$ (4), are only -80 and -40 MtN‰/y for 15 N and 18 O, too small to balance the F Δ terms by factors of 5 and 12, respectively. Indeed in order to obtain approximate isotopic mass balances with soil gases for the most negative global mean isotopic δ values for N and O shown in Fig. 1 (approximately -25 and 0), soil-gas source functions of 12.5 and 24 MtN/y are required. Such fluxes are certainly conceivable, but it seems improbable that we have underestimated the soil source term by such large factors (5).

However, there is yet another problem with balancing the stratospheric return flux by the soil-gas emission of N₂O: In Fig. 2 the vector between the mean isotopic composition of the stratospheric return flux and the mean soil-gas composition (or indeed to any possible soil-gas composition based on these data) does not intersect the isotopic composition of mean tropospheric air (thus the difference in the two isotopic flux results found in the preceding paragraph). No matter how large the soil-gas source terms may be, a third component is required to account for the isotopic composition of tropospheric N_2O . In Fig. 2 we have chosen the source composition of the oceanic near-surface production as this third component, with values of $\delta^{15}N \approx +5$ per mil and $\delta^{18}O \approx$ +15 per mil (deliberately estimated as somewhat more extreme than the mea-

Fig. 2. Isotopic composition of stratospheric N_2O compared to tropospheric N_2O , soil gases, and oceanic N_2O (5). The three vectors connect the estimated mean source values (circled points) for the three major steady-state input fluxes: the stratospheric return flux, the input of soil gases, and the near-subsurface oceanic production (5). EM: the estimated stratospheric end-member (that is, the maximum isotopic enrichments in stratospheric N_2O).

sured data). Thus the isotopic differences from tropospheric N_2O are -2 per mil and -5.7 per mil, and with the conventional value for the oceanic J source term of ~ 2 MtN/y (5) the isotopic flux terms are respectively -4 and -11 MtN‰/y for N and O. These isotopic fluxes are therefore too small by factors of 100 and 50 to balance the isotopic stratospheric return fluxes.

Although we have analyzed only a limited number of soil gases, these are presumably representative of N₂O from tropical rain forests and fertilized soils. It is doubtful, therefore, that we can look to a vastly different mean soil-gas isotopic composition to solve the isotopic mass balance problem. However, two more reasonable possibilities exist. First, the stratospheric profile we have analyzed is from 68°N and may therefore not be representative of the mean stratospheric return flux. This problem can readily be investigated by studying more profiles to see if there is less enrichment (or more mixing) in the return-flux stratospheric N₂O. This would decrease the isotopic flux terms, although the vector would still not pass through mean tropospheric N₂O.

The second possibility is that the tropospheric fluxes to and from the ocean are large, so that as suggested above, the oceanic production of light N2O in the near-subsurface waters buffers the tropospheric composition by balancing the stratospheric return flux of the isotopic species. For example, if the atmospheric residence time, relative to the flux into the sea, can be assumed to be similar to that for CO_2 [$\tau_{atm} \sim 7$ years (22)] then the flux into and out of the sea that is relevant for the isotopic flux balances is \sim 200 MtN/y, the $J\Delta$ terms for ¹⁵N and ¹⁸O (assuming the mean source marked in Fig. 2) become -400 and -1100 MtN‰/y respectively, and the balances are achieved. (The differences between these numbers are due to the fact that neither mixing vector from the other two sources to the assumed oceanic source passes through the tropospheric N_2O point. However, in this case the composition of the oceanic subsurface source is known only in the crudest approximation at present: We need not despair at the imbalances.)

In general, resolution of the magnitude of the soil-gas and oceanic source fluxes from the isotopic data is difficult when the isotopic balance is made within the troposphere. The soil-gas (and anthropogenic) terms are essentially small differences between two large numbers. What is needed is a careful evaluation of the isotopic removal fluxes in the stratosphere by photolysis and chemistry: that is, one needs the isotopic fractionation factors and concentrations over the altitude range in which the destruction of N_2O takes place. In this case the stratospheric flux terms in and out of the troposphere are not involved, and the continental and oceanic terms can be directly compared with the much smaller isotopic removal flux terms. It is important also to establish the isotopic composition of the N_2O produced in the upper regions of the oceans and to continue to study stratospheric profiles from more representative geographical sites.

The N₂O mixing ratio in trapped gases in ice cores has fluctuated drastically in glacial epochs, by as much as 30% in times of maximum glaciation (23). This drop was presumably caused by the decrease in exposed soil areas in the Northern Hemisphere, but other sources may change as well. The decreased mixing ratios should be reflected in increases in the ¹⁵N/¹⁴N and ¹⁸O/¹⁶O ratios of tropospheric air because of the decreased input of isotopically light soil-N₂O. At present we are able to see only dimly, and with only the least understanding, the broad picture of interaction of soils, oceanic subsurface and surface waters, stratospheric fluxes, and photolysis rates that determine the secular changes in the tropospheric concentration of N_2O (24).

REFERENCES AND NOTES

- J. T. Houghton, G. J. Jenkins, J. J. Ephraums, Eds. *Climate Change* (Cambridge Univ. Press, Cambridge, 1990), pp. 25–27.
- M. Keller, W. A. Kaplan, S. C. Wofsy, *J. Geophys. Res.* 91, 11791 (1986).
 P. A. Matson and P. M. Vitousek, *Global Bio*-
- P. A. Matson and P. M. Vitousek, *Global Bio-geochem. Cycles* 1, 163 (1987); *Bioscience* 40, 667 (1990).
- 4. The atmospheric reservoir of N₂O is ~1500 Tg of nitrogen (TgN), so that the stratospheric destruction rate corresponds to a steady-state input flux of ~10 MtN/y (megatons of N per year). Current estimates for the major sources, summarized in (1), are ~4 MtN/y from forest soils (75% tropical forests and 25% temperate forests), 2 MtN/y from oceanic production, and 1.3 MtN/y from anthropogenic sources (fertilizer: 1, combustion: 0.2, biomass burning: 0.1). All these estimates are subject to large and poorly known uncertainties, but at face value the figures indicate that the total estimated source strength (~7.3 MtN/y) amounts to ~50% of the destruction rate (10 MtN/y) plus the atmospheric in-crease rate of \sim 4 MtN/y. Despite the large uncertainties, there is general agreement (1) that the sources and sinks cannot be brought into agreement.
- K.-R. Kim and H. Craig, *Nature* **347**, 58 (1990).
 _____, *Eos* **73**, 77 (1992).
- 7. Our method of direct analysis of molecular N₂O circumvented the need for chemical conversion of N₂O to N₂ + CO₂ in a high-vacuum system and separate isotopic analyses of N₂ and CO₂. We observed no production of NO₂ in the spectrometer ion source, and the analytical precision for both isotopes was considerably improved (~0.05 per mil). This technique is important for soil-gas and stratospheric samples, both of which have much smaller contents of N₂O study (5). The isotopic variations are expressed as per mil deviations (per mil delta values) of the ¹⁵N/¹⁴N

SCIENCE • VOL. 262 • 17 DECEMBER 1993

and $^{18}\text{O}/^{16}\text{O}$ ratios from the ratios in atmospheric N_{2} and O_{2} (5). The Costa Rica samples were collected at La Selva

- 8. The Costa Rica samples were collected at La Selva Biological Station (10°26'N, 84°00'W), at two sites: the Jaguar soils (JA) and La Selva soils (CE). At both these sites the soils are moist and the forest is mature old growth that has been undisturbed in historical times (8). The JA site is a highly weathered, relatively infertile, clay-accumulating soil (technically an ultisol) on Pleistocene Iava. The CE site, on a middle terrace of the Puerto Viejo River, is a younger, more fertile soil without a horizon of accumulation (technically an inceptisol).
- P. Sollins, F. Sancho, R. Mata, R. L. Sanford, in La Selva: Ecology and Natural History of a Tropical Rainforest, L. A. McDade et al., Eds. (Univ. of Chicago Press, Chicago, 1992).
- 10. The Maui samples were collected at two young sugar-cane fields, one on the wet side (W) and one on the dry side (D) of the island. Urea used as the fertilizer in both fields is introduced intensively through the irrigation lines during the first year of growth.
- 11. Soil-air samples of ~28 ℓ were collected from the soil-flux measurement chambers in preevacuated 27-ℓ aluminum cylinders. From the flux chambers, with ~10 ℓ of head space over the soils, air was slowly drawn into the cylinder (flow rate \sim 120 ml/min) while ambient air was fed into the chamber at the top to maintain the ambient pressure. When the cylinder pressure was approximately atmospheric, a small batteryoperated pump brought the cylinder up to 2 to 3 psi over ambient. The Maui samples had relatively low concentrations of N₂O, and two cylinders collected from the same chamber in series, or from nearby chambers, were combined into a single sample during N2O purification. In the laboratory, after measurement of the N_2O mixing ratios, N_2O was separated at liquid nitrogen temperature after removal of most of the CO_2 by passage through an Ascarite column. The N_2O was further purified by a preparatory GC system with a Porapak Q column.
- 12. The soil-gas samples contained ambient atmospheric N₂O (~310 ppbv) together with the N₂O that had diffused from the soil. The end-member compositions of the soil N₂O are calculated from the air and soil-gas N₂O concentrations and the known isotopic composition of tropospheric N₂O.
- 13. N. Yoshida, *Nature* **335**, 528 (1988).
 - 14. T. Yoshinari and M. Wahlen, *ibid.* **317**, 349 (1985).
 - R. F. Weiss, *Eos* 62, 894 (1981).
 C. S. Law and N. J. P. Owens, *Nature* 346, 826
 - (1990). 17. J. D. Cline and I. R. Kaplan, *Mar. Chem.* **3**, 271
 - (1975); Y. Cohen and L. I. Gordon, *Deep Sea Res.* **25**, 509 (1978).
 - 18. N. Yoshida et al., Nature 342, 895 (1989).
 - M. Wahlen *et al.*, *Eos* **70**, 1017 (1989). The stratospheric air samples were collected cryogenically on balloon flights, and were given to us in aluminum cylinders for extraction of N₂O.
- 20. R. Newell, *Nature* **226**, 70 (1970). 21. J. R. Holton, *J. Atmos. Sci.* **47**, 392 (1990).
 - 22. H. Craig, *Tellus* **9**, 1 (1957).
 - Claug, Tellus 9, 1 (1957).
 M. Leuenberger and U. Siegenthaler, Nature 360,
 - 449 (1992).
 24. We thank M. Keller for the use of the facilities and assistance in soil gas collections at La Selva, and P. Matson and P. Vitousek for facilities and assistance at their Maui sites. B. Deck and M. Wahlen gave us the stratospheric air samples. We also thank E. Davidson for introducing us to the world of soil-gas sampling, R. Riley for assistance on Maui, R. Weiss for measuring the N₂O mixing ratios in the Maui samples, K. K. Turekian for insight and suggestions, and D. Brewton for assistance with the mass spectrometry. S. Solomon provided an important reference and useful comments. This research was supported by grants from the Department of Energy National Institute for Global Environmental Change Program to the Isotope Laboratory, Scripps Institu-

12 July 1993; accepted 29 October 1993

tion of Oceanography.

1857