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Colocalization of X-Linked Agammaglobulinemia
and X-Linked Immunodeficiency Genes

Jeffrey D. Thomas, Paschalis Sideras, C. |. Edvard Smith,
Igor Vorechovsky, Verne Chapman, William E. Paul*

Mice that bear the X-linked immunodeficiency (xid) mutation have a B lymphocyte—specific
defect resulting in an inability to make antibody responses to polysaccharide antigens. A
backcross of 1114 progeny revealed the colocalization of xid with Bruton’s agammaglob-
ulinemia tyrosine kinase (btk) gene, which is implicated in the human immune deficiency,
X-linked agammaglobulinemia. Mice that carry xid have a missense mutation that alters
a highly conserved arginine near the amino-terminus of the btk protein, Btk. Because this
region of Btk lies outside any obvious kinase domain, the xid mutation may define another

aspect of tyrosine kinase function.

CBAN mice, which bear the xid muta-
tion, do not produce antibodies in response
to immunization with polysaccharides or
hapten-polysaccharide conjugates and have
low serum immunoglobulin M (IgM) and
[gG3 (I). These mice have moderately

J. D. Thomas and W. E. Paul, Laboratory of Immunol-
ogy, National Institute of Allergy and Infectious Dis-
eases, National Institutes of Health, Bethesda, MD
20892.

P. Sideras, Unit for Applied Cell and Molecular Biolo-
gy, Umed University, S-901 87, Umeé&, Sweden, and
Center for BioTechnology, Karolinska Institute, NO-
VUM, S-14157 Huddinge, Sweden.

C. I. E. Smith and |. Vofechovsky, Center for BioTech-
nology, Karolinska Institute, NOVUM, S-14157 Hud-
dinge, Sweden.

V. Chapman, Department of Molecular Biology,
Roswell Park Cancer Institute, Buffalo, NY 14263.

*To whom correspondence should be addressed.

reduced numbers of B cells, and the B cells
that are present have a high surface IgM to
IgD ratio, an inability to form colonies in
soft agar, and an absence of proliferation in
response to surface Ig receptor cross-link-
age. These animals do produce normal
amounts of antibodies to protein antigens.
Genetic characterization showed that xid is
located between Tabby and Hypophos-
phatemia on the mouse X chromosome (2).
Studies of F, female mice heterozygous at
xid revealed a random pattern of X inacti-
vation in pre-B cells, T cells, and other
non-B cells. However, in the mature B cell
population, a preponderance of cells have
inactivated the xid-bearing X chromosome
(3). Because the xid defect affects central
aspects of B cell development and function,
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we set out to identify its molecular nature
using a positional cloning approach (4).

CBA/N female (xid/xid) mice were mat-
ed to Mus musculus Skive (Skive) (+/Y),
an inbred strain that has a high degree of
genetic polymorphism relative to standard
lab strains (5). Matings between the result-
ing F, female mice (+/xid) and CBA/N
male (xid/Y) mice generated 1114 progeny.
These “backcross” mice were immunized
with trinitrophenyl (TNP)-Ficoll (2), and
their phenotype (XID or normal) was de-
termined by measurement of both serum
[gM antibody to TNP (anti-TNP) and total
serum IgG3 by enzyme-linked immunosor-
bant assay (ELISA) (6) (Fig. 1).

Because of the large number of backcross
animals, we designed a highly focused strat-
egy for mapping mouse X chromosome
DNA markers relative to xid. We first ana-
lyzed a small, independently generated set
of backcross mice using polymorphic mark-
ers that span the X chromosome. This
analysis confirmed the previous mapping of
xid (2). We therefore identified polymor-
phisms between CBA/N and Skive at three
loci located in this region (DXCrc47, DX-
Was17, and DXSmh43) (7) and developed
polymerase chain reaction (PCR)-based as-
says to facilitate rapid analysis (8). Alleles
at each of these loci were determined with
the use of genomic DNA that was isolated
from backcross males (Fig. 2A). This anal-
ysis showed that xid lies between DXWas17
and DXSmh43. The 46 male backcross
DNAs that were recombinant between
these two loci were analyzed at several loci
containing simple sequence repeats (SSRs):
DXMit3, DXMit4, DXMit9, and DXNds2
(Fig. 2A) (9, 10).

We used a more restricted analysis to
identify informative recombinants among
the backcross females. All females were
analyzed at three loci: xid, DXWas17, and
DXMit4 (Fig. 2A). The 20 backcross fe-
males found to be recombinant between
DXWas17 and DXMit4 were analyzed at
DXMit3, DXMit9, and DXNds2 (Fig. 2A).
The resultant map (Fig. 2C) is in good
agreement with and extends the current
map of the mouse X chromosome (7).

The X chromosome marker DXMit3 did
not recombine with xid in any of the 30
backcross animals recombinant between
DXWas17 and DXNds2, placing DXMit3
within 0.27 centimorgan (cM) of xid at the
95% confidence limits. Thus, DXMit3 de-
fines an excellent entry point for the identi-
fication of candidate genes in the xid region,
as had been our original goal. Our mapping
results suggested that xid lies in the region of
the mouse genome that is homologous to the
region of the human genome containing the
X-linked agammaglobulinemia (XLA) muta-
tion (7). The defective gene in XLA, named
btk (formerly atk or BPK), encodes a cyto-
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plasmic tyrosine kinase (11, 12). Because btk
is expressed in B cell progenitors and in
mature B cells but not T cells (11, 12), and
because xid mutations and XLA share some
phenotypes (1), we mapped the btk gene in
our backcross mice.

Using a human btk cDNA as a probe, we
isolated a cDNA clone of the mouse ho-
molog of btk and determined its sequence
(13). Fragments of btk cDNA were ampli-
fied from RNA isolated from CBA/N B cells
by reverse transcription and PCR (14).
Sequence analysis of these fragments re-
vealed a mutation that resulted in the loss
of a Hha I restriction site in the coding
sequence of btk (below). Restriction analy-
sis of PCR-amplified products from Skive
genomic DNA showed that this site was
present in the Skive btk gene (Fig. 2B). We
assayed the informative subset of backcross
animals for the presence or absence of this
Hha I polymorphism. We observed com-
plete cosegregation of the Skive allele of
btk and immunocompetence. Thus, xid,
DXMit3, and btk are all located in the same
nonrecombinant interval defined by the
1114 backcross progeny we analyzed.

Based on the genetic proximity of
DXMit3 and btk, large genomic clones,
such as those contained in yeast artificial
chromosome (YAC) libraries, ought to
contain both sequences. We used primers
that amplified DXMit3 to isolate eight
unique YAC clones, two from a mouse
genomic library that contains clones with
an average insert size of 250 kb (15) and six
from a similar library in which the average
insert size is 680 kb (16). Using a PCR assay
(8), we found that all eight YAC clones
contained the btk gene, confirming physical
linkage of DXMit3 and btk.

The cytosine to thymidine mutation
that resulted in the Hha I restriction site
polymorphism also converted Arg?® of Btk
(11, 12) to Cys® (Fig. 3). To determine
whether this mutation existed in the iso-
genic, immunocompetent strain, CBA/
CaHN (17), and to investigate whether any

IgM anti-TNP Slegm
anti- 3
104} %ﬂuor. units) (ngg/ml)

® °
1 03 0.0
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1024 : [
°
1 011 ?. xid ..~
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o

Fig. 1. Representative ELISA results from 40
backcross animals. Eight-week-old backcross
animals were injected intraperitoneally with 10
ng of trinitrophenyl (TNP)-Ficoll. One week lat-
er, serum was collected and analyzed by ELISA
(6). Brackets indicate mice typed as express-
ing the XID phenotype.
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other mutations existed in the coding se-
quence, we did a side by side analysis of the
sequence of the btk cDNA from CBA/N
and CBA/CaHN B cells (14). The cytosine
to thymidine transition was the only differ-
ence between CBA/N and CBA/CaHN btk
cDNA within the entire 1977-nucleotide
coding region.

Because the mutation in the btk gene of

XID is located in a region of the protein
that lies outside the known functional do-
mains of tyrosine kinases, we determined
whether this arginine was evolutionarily
conserved. We amplified by PCR this re-
gion of btk from genomic DNA of BALB/c,
C57BL/6, and Mus spretus mice (8). Using
Hha I, we found that the btk gene of each
strain contains Arg®5. We also amplified

Fig. 2. Mapping results from back-
cross analysis. (A) Haplotype re-
sults. Number of individuals of each
haplotype are indicated. The xia
alleles were determined as de-
scribed in Fig. 1. Alleles at other
loci were determined by PCR, dot-
blotting and allele-specific oligonu-
cleotide hybridization (8) (used to
analyze males at DXCrc47, DX-
Was17, and DXSmh43), or PCR,
then denaturing polyacrylamide
electrophoresis (9) (used to ana-
lyze females at DXWas17 plus all
animals at DXMit3, DXMit4, DXMit9,
and DXNds2). DXCrc47 haplotype
data are not shown. (B) Analysis of
segregation of btk alleles in the 30
backcross mice recombinant be-
tween DXWas17 and DXMit9. After
amplification of genomic DNA from
individual mice with primers MXL1
and MXL2 (8), samples were di-
gested with Hha | and Rsa | and
then electrophoresed on a nonde-
naturing 15% acrylamide gel and
electroblotted onto GeneScreen
Plus (Du Pont). Oligonucleotide
MXL23 (8) was end-labeled and
hybridized to the resulting blot. The
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Skive allele (containing an Hha | site) is predicted to yield a 20-base pair (bp) fragment, whereas
the CBAVN allele (lacking an Hha | site) should yield a 65-bp fragment. This was confirmed by the
controls shown in the far left lanes. That the two alleles do not give signals of equal intensity is due
to the inefficient binding of the 20-bp fragment to the membrane. The origin of the Skive-specific
band migrating below the 20-bp fragment is unknown. Individual haplotypes at closely linked loci
are indicated above the corresponding lanes. (C) Map of the xid region of the mouse X
chromosome, showing genetic distances determined by the above haplotype analysis. We
determined genetic distances by dividing the number of recombinants by the number of meiotic
events analyzed, shown below each interval, respectively.

Fig. 3. Comparison of btk
sequences from various
mouse strains and from
various mammalian spe-
cies. A fragment of the
btk gene was amplified
by PCR from genomic
DNA with primers MXL1
and MXL2 (8). Se-
quences of PCR prod-
ucts were determined by
cycle sequencing of
these products using the
MXL1 primer (8, 14).
BALB/c sequence is from
(13). Differences from

BALB/c
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the “wild type” mouse sequence are denoted by enlarged letters and are highlighted in bold.
Single-letter abbreviations for the amino acid residues are as follows: K, lysine; T, threonine; S,
serine; P, proline; L, leucine; N, asparagine; F, phenylalanine; R, arginine; V, valine; H, histidine; C,
cysteine; M, methionine; and Q, glutamine.
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the same region from six additional mam-
malian species and did limited sequence
analysis on the resultant products (Fig. 3).
The Arg?® and all but two amino acids were
conserved among these species, despite the
occurrence of many silent mutations.
Although the mutation in the btk gene
of XID mice is not predicted to cause
alterations in btk transcript size, abun-
dance, or inducibility in XID B lympho-
cytes, other undetected mutations located
in the intronic or flanking regions of the btk
gene might do so. To address this possibil-
ity, we isolated resting B cells from the
spleens of adult CBA/N and CBA/CaHN
mice, stimulated them with interleukin-4
(IL-4) and lipopolysaccharide (LPS) for 0,
4, or 21 hours, and then harvested total
RNA. Northern (RNA) blot analysis of
these preparations showed that a single
2.8-kb transcript could be detected in both
CBA/CaHN and CBA/N B cells (Fig. 4A).
Densitometric analysis showed that relative
to B-actin mRNA, there was no significant
difference in btk mRNA levels in resting or
stimulated CBA/N cells in comparison to
resting or stimulated CBA/CaHN B cells.
To determine whether the mutation at
Arg?® affected autophosphorylation activity
of Btk protein, we precipitated Btk from
lysates of unstimulated CBA/N and CBA/
CaHN B cells with antiserum to Btk (12,
18). Half of the precipitated material was
incubated with adenosine triphosphate
(ATP) in a buffer appropriate for tyrosine
phosphorylation (19). Protein immunoblot
analysis of these samples revealed that Btk
was present in both CBA/N and CBA/

Fig. 4. Analysis of the
expression of btk in XID

CaHN B cells and that Btk from both
sources could autophosphorylate (Fig. 4B).

Until it can be shown that the unmu-
tated btk gene can complement the xid
mutation, the possibility that XID is caused
by a mutation in an unidentified gene that
lies very near btk cannot be formally exclud-
ed, although the data presented here sug-
gest that the Arg to Cys mutation in the btk
gene of CBA/N mice is responsible for the
XID phenotype. Several inherited diseases
are caused by Arg to Cys mutations that
alter enzymatic activity (20), ligand-recep-
tor interactions (21), or cytoskeletal struc-
ture (22). XID also shares distinctive fea-
tures with human XLA. In both these
immune deficiencies, defects are restricted
to the B lineage and alter B lymphocyte
ontogeny (I, 3, 23). The XLA alleles that
have been characterized bear mutations in
the kinase domain (11) and exhibit a more
severe immune deficiency than XID. How-
ever, the single existing allele of XID ex-
hibits a higher degree of expressivity when
present in thymectomized mice (24), with
the nu (athymic) mutation (25), or in C3H
mouse strains (26). In particular, young
adult nu/nu xid mutant mice display pro-
found depletion of lymphocytes from spleen
and lymph nodes and a striking hypogam-
maglobulinemia (25), features commonly
observed in XLA (23).

The xid mutation lies in the unique
region of btk (11, 12, 27). Though little is
known about the function of the NH,-
terminal unique domains of tyrosine ki-
nases, they presumably mediate specific in-
termolecular interactions. Unique domain
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btk
1.1 06 06 1.0 0.8 08 Fachn

ern blot analysis. The blot in the upper panel was probed with a 32P-labeled fragment of a mouse
btk cDNA clone containing nucleotides —127 through 1316 relative to the initiation codon (13). After
removal of the btk probe, this blot was reprobed with a 32P-labeled fragment of mouse B-actin
cDNA, and the results are shown in the lower panel. Molecular size standards (in kilobases) are
shown on the left. The ratio of btk mMRNA to B-actin mRNA, as determined by densitometric
scanning, is shown below the blots. (B) Analysis of Btk protein and its ability to autophosphorylate.
Btk was immunoprecipitated from 5 x 107 resting B cells isolated from CBA/CaHN (/Ca) or CBA/N
(/N) animals with a rabbit antiserum to Btk (anti-Btk) (72, 18). Half of the immunoprecipitated
material was resuspended in kinase buffer and incubated for 10 min with ATP (79). Each of these
four samples was divided again, electrophoresed on 4 to 20% SDS-polyacrylamide gels, and
blotted onto nitrocellulose. The blots were probed with either anti-Btk (left two panels) or monoclonal
antibody to phosphotyrosine 4G10 (anti-PTyr) (Upstate Biotechnology) (right two panels), washed,
and then probed with '25]-labeled protein A (Amersham) (78). The 50- to 55-kD band represents the
heavy chain of immunoglobulin. Molecular weight standards (in kilodaltons) are shown on the left.
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splice variants are common in nonreceptor
kinases (28, 29), and some are expressed in
a tissue-specific manner (28). Mutation of
the NH,-terminal glycine in Src prevents
both myristylation and morphological
transformation (30). Missense point muta-
tions elsewhere in the unique domain of Src
also affect functional differences (31).
Thus, it is possible that the mutation inter-
feres with the ability of Btk to interact with
regulatory or substrate molecules that are
important components of a signaling path-
way. The xid mutation could alter intramo-
lecular interactions between the unique
region and other functional domains of Btk
or interfere with posttranslational modifica-
tions of Btk such as phosphorylation. The
xid mutation might also affect a potential
nuclear localization signal in Btk (32). If
Btk is localized in a subcellular compart-
ment in which disulfide bonds can form,
the Cys® residue could be involved in such
linkages. Two other recently identified
nonreceptor kinases, Tec and Itk (33),
share several features with Btk including a
high degree of homology in their NH,-
terminal unique domains (11, 12) and have
been suggested to comprise a new family of
kinases (28). The xid mutation is in the
unique region of one of these proteins and
will likely help in elucidation of functions
of this domain.
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Mutation of Unique Region of Bruton’s Tyrosine
Kinase in Immunodeficient XID Mice

David J. Rawlings, Douglas C. Saffran, Satoshi Tsukada,
David A. Largaespada, J. Christopher Grimaldi, Lucie Cohen,
Randolph N. Mohr, J. Fernando Bazan, Maureen Howard,
Neal G. Copeland, Nancy A. Jenkins, Owen N. Witte*

The cytoplasmic tyrosine kinase, Bruton’s tyrosine kinase (Btk, formerly bpk or atk), is
crucial for B cell development. Loss of kinase activity results in the human immunodefi-
ciency, X-linked agammaglobulinemia, characterized by a failure to produce B cells. In the
murine X-linked immunodeficiency (XID), B cells are present but respond abnormally to
activating signals. The Btk gene, btk, was mapped to the xid region of the mouse X
chromosome by interspecific backcross analysis. A single conserved residue within the
amino terminal unique region of Btk was mutated in XID mice. This change in xid probably
interferes with normal B cell signaling mediated by Btk protein interactions.

B cell development is characterized by an
orderly expression of cell surface markers
and responses to specific activation signals
(1). Tyrosine kinases are important in the
signaling pathways regulating these events
(2). Btk, expressed in B and myeloid cells,
and several homologous genes constitute a
unique tyrosine kinase subfamily distinct
from the Src subfamily (3, 4). The Btk
family members have a long, highly con-
served NH,-terminal unique region and
lack a negative regulatory tyrosine. Despite
its critical role in B cell development, the
specific functions of Btk in B cell signaling
are not yet known.

The xid gene defect results in failure of B
cells to become phenotypically and func-
tionally diverse (5, 6). B cells from XID
mice do not respond to thymus-indepen-
dent type 2 antigens, have abnormal re-
sponses to a variety of activation signals
(5-7), and have a surface phenotype sug-
gestive of disordered maturation (8). These
findings suggest that B cells with the xid
mutation lack essential signals for B cell
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activation and maturation. Despite charac-
terization of these cellular defects, the un-
derlying genetic change remains unknown.

In contrast to the xid mutation, X-linked
agammaglobulinemia (XLA) results in pro-
duction of few B cells and severe humoral
immunodeficiency. Despite this distinc-
tion, XLA and XID have several common
features. First, the surface phenotypes of
XLA and XID B cells are similar, suggesting
that both result in abnormal B cell activa-
tion (6, 9). Second, both disorders appear
to result from an intrinsic B lineage defect,
as evidenced by nonrandom X chromosome
inactivation limited to B cells (10). And
finally, xid maps to a region of the X
chromosome that shares homology with the
human XLA locus at Xq21.3-Xq22 (11,
12). For these reasons, we evaluated the
possible role of Btk in XID.

The murine chromosomal location of btk
was determined by interspecific backcross
analysis using a mapping panel typed for
over 1100 loci (13). Southern (DNA) blot
analysis using a btk unique region probe
identified three Mus spretus—specific Sph I
restriction fragment length polymorphisms.
These were used to follow the segregation of
the btk locus in backcross mice (Fig. 1).
The btk locus was mapped to the distal
portion of the X chromosome linked to
pgk-1, DXPas2, and plp. The gene order and
recombination frequencies expressed in
centimorgans (cM * SE) are centromere,
pgk-1 (1.7 £ 1.7), DXPas2 (3.6 = 2.1), btk
(3-3 = 1.9), and plp (Fig. 1). The xid locus
is distal to Pgk-1 in the interval surrounding

DXPas2 (in Fig. 1) (12). These two data





