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Divergence in Proteins, Mitochondria1 DNA, and 
Reproductive Compatibility Across the 

Isthmus of Panama 

Nancy Knowlton,* Lee A. Weigt, Luis Anibal Solorzano, 
DeEtta K. Mills,? Eldredge Bermingham 

It is widely believed that gene flow connected many shallow water populations of the 
Caribbean and eastern Pacific until the Panamaseaway closed 3.0 to 3.5 million years ago. 
Measurements of biochemical and reproductive divergence for seven closely related, 
transisthmian pairs of snapping shrimps (Alpheus) indicate, however, that isolation was 
staggered rather than simultaneous. The four least divergent pairs provide the best es- 
timate for rates of molecular divergence and speciation. Ecological, genetic, and geological 
data suggest that gene flow was disrupted for the remaining three pairs by environmental 
change several million years before the land barrier was complete. 

Geographic isolation is thought to permit 
divergence and speciation by disruption of 
gene flow (1). Pairs of marine sister taxa 
separated by the Isthmus of Panama are 
ideal for studying these processes (2-5) 
because isolation of the Caribbean and the 
eastern Pacific is well dated and relatively 
recent (6, 7). This geological framework 
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has prompted study of transisthmian sister 
taxa to test the accuracy of molecular clocks 
and to estimate the timing of other evolu- 
tionary events (3, 4, 8). It has been difficult 
to interpret inconsistencies and estimate 
possible phylogenetic differences in diver- 
gence rates (9), however, because of the 
limited number of taxa and characters stud- 
ied. To address these problems, we investi- 
gated divergence in allozymes, mitochon- 
drial DNA (mtDNA) , and reproductive 
compatibility for seven shallow water trans- 
isthmian pairs of sister taxa in the snapping 
shrimp genus Alpheus. 

We used the taxonomic literature to 
identify transisthmian pairs that were spe- 

cifically and unambiguously described as 
each other's closest relatives on the basis of 
morphological criteria (1 0). Collections 
along the two coasts and adjacent islands of 
central Panama at depths less than 5 m 
revealed unrecognized sibling species in ad- 
dition to these pairs (I I) .  In total, we 
examined 17 taxa (Table I ) :  two unambig- 
uous pairs (P4-C4, P5-C5), three triplets 
(P3-C3, P3-C3'; P6-C6, P6'-C6; P7-C7, 
P7'-C7), and one quartet (PI-Cl,  PI-C2, 
P2-Cl. P2-C2). We used shared anatomi- 
cal and color pattern character states (12) 
to posit relations within the triplets and 
quartet. The result was seven morphologi- 
cally defined transisthmian sister species 
pairs (bold in Tables 1 and 2). 

For each taxon, we characterized allo- 
zymes by using conventional starch gel elec- 
trophoresis (1 3) and sequenced a segment of 
the mtDNA cytochrome oxidase I (COI) 
gene (14). Aggressive behavior was used as 
an estimate of behavioral comDonents of 
reproductive compatibility , (1 5) because 
snapping shrimp attack heterospecific indi- 
viduals and all conspecifics except potential 
mates (1 6). We calculated genetic diver- 
gence between transisthmian pairs using 
Nei's D for allozymes and Kimura's corrected 
percent sequence divergence for mtDNA 
(1 7). We estimated divergence in behavioral 
compatibility by standardizing measures of 
tolerance and intolerance for transisthmian 
pairs against values observed in intraoce- 
anic, conspecific control matings (1 5). 

These three measures of divergence con- 
sistently support assignments of transisth- 
mian sister species pairs on the basis of 
morphology and color pattern. Within the 

Fig. 1. Single most parsimonious phylogenetlc 
tree constructed on the basis of mtDNA se- 
quences w~th PAUP (18). Transitions were giv- 
en one-quarter the weight of transversions 
(based on the fourfold greater-abundance of 
transitions than transverslons in our data), and 
trees were rooted by the P7-P7'-C7 clade. 
Taxon codes are as in Table 1 
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triolets and auartet. transisthmian sister 
species pairs generally show greater repro- 
ductive compatibility, lower allozyme di- 
vergence, and lower mtDNA divergence 
than nonsister transisthmian pairs (com- 
pare bold to normal type values in Tables 1 
and 2). Parsimony analysis (1 8) of mtDNA 
sequences also upholds these assignments 
(Fig. 1).  

The  seven transisthmian sister s~ec ies  
pairs varied nearly threefold or more in  
molecular and reproductive divergence 
(Tables 1 and 2) .  Furthermore, each mea- 
sure was strongly and significantly (al- 
though not perfectly) associated with the 
other two (Fig. 2). The most conspicuous 
discrepancy is the low Nei's D relative to 
mtDNA divergence for pair PI-C1, a pat- 
tern also exhibited bv one of three studied 
transisthmian pairs of sea urchins (4). The 
overall agreement among the measures of - - 
divergence is best explained by staggered 
isolation. The null hypothesis, that isola- 
tion was simultaneous but rates of diver- 
gence are highly variable, is incompatible 
with the observed oattern because metabol- 
ic enzymes, mtDNA, and mate recognition 
share no mechanistic basis that would cause 
their divergence rates to be automatically 
associated. 

There are few other tenable explanations 
for this pattern of concordant variation, and 
none seems applicable here. Differences in  
intensity of natural or sexual selection are 

Table 1. Molecular comparisons (13, 14) of 
translsthmian taxa The seven pairs of sister 
taxa are in bold. Currently recognized species 
names ( lo ) ,  wlth undescrlbed sympatric sib- 
ling specles notations (IT), are as follows PI, 
Alpheus rostratus; C1, A. paracrin~tus sp, b, P2, 
A paracrinitus; C2, A paracr~nitus sp a ,  P3, A. 
panamensis, C3, A. formosus sp. a ;  C3', A 
formosus sp. b; P4, A cyl~ndr~cus, C4, A cylin- 
dricus; P5, A, saxidomus; C5, A, simus, P6, A. 
canails sp,  b: C6, A, nutting;; P6', A, canalis sp. 
a ,  P7 and P7', A. cristulifrons; C7, A. cristuli- 
frons (P, Pacific; C, Caribbean). Genetic diver- 
gence between pairs was calculated with Nei's 
D for allozymes and Kimura's corrected per- 
cent sequence divergence for mtDNA (17). 

Allo- mtDNA COI 
Taxa zymes ~ e a n  (range) 

unlikely to affect all three systems in a 
parallel fashion and cannot explain the com- 
parable pattern observed for silent mtDNA 
substitutions (19) in  any case. Likewise, 
there is no evidence for differences among 
the pairs in historical effective population 
sizes or generation times that can be related 
to divergence (20). 

The  conclusion that isolation was not 
simultaneous justifies elimination of the 
most dissimilar pairs i n  estimating rates of 
molecular divergence. Dividing the values 
of allozyme and mtDNA sequence diver- 
gence for pairs P I - C l ,  P2-C2, P3-C3, and 
P4-C4 by the estimate for time since final 
closure of the Panama seaway of 3.0 to 3.5 
million years ago (Ma) (6, 7) yields an 
approximate rate of divergence of 0.03 to 

0.04 for Nei's D and 2.2 to 2.6% for 
mtDNA sequence per lo6 years (2 1 ) . Es- 
timated times since divergence for the 
remaining three pairs, using these calibra- 
tions, are 4.4 to  6.1 (P5-C5), 4.0 to 6.3 
(P6-C6), and 6.8 to 9.1 (P7-C7) Ma. 

Genetic divergence before final closure 
may have been facilitated by changing 
oceanographic conditions. Fossil foramin- 
iferal assemblages suggest a cessation of 
circulatory connections across the Panama 
seawav between 12.9 and 7.0 Ma as a 
result of altered current patterns, followed 
bv return of a restricted shallow water 
connection that shoaled to a depth of less 
than 50 m by 6.3 Ma (7). By 5.0 Ma, 
strombinid gastropods showed substantial 
divergence at the subgeneric level (22), 

Table 2. Behavioral tolerance and intolerance of male-female transisthmian pairs (T) relative to 
intraoceanic control pairs ( 1 )  (15) Shown are the proportion paired, number of passive contacts, 
number of snaps, number of aggressive contacts, and overall compatibility (medlan of the four 
measures). Specles are as  described in Table 1. No data are available for the P7'-C7 comblnatlon. 
Low values indicate that transisthmian pairs showed little tolerant behavior or much intolerant 
behavior relative to intraoceanic pairs of the same taxa. Note that behavioral pairing does not 
necessarly lead to production of fertile clutches. During a 30-day period after these behavioral 
observations, only one replicate of translsthmian pair P3-C3 produced fertile clutches (representing 
1% of all transisthmlan pairs tested, in contrast to 60% production of fertlle clutches by intraoceanic 
control pairs). 

Fig. 2. Relation between allozyme divergence 20 
(summarized as Nei's D),  mtDNA sequence di- 
vergence, and male-female behavioral compat- 
ibility for seven translsthmian slster specles pairs 
(bold values In Tables 1 and 2). For each pair, g - l 5  
median behavioral compatibility is summarized ; 
in pie chart format within the circle indicating the 2 
relation between the two measures of biochem- gl0 
~cal divergence Data for each pair are indepen- g 
dent of data for other pairs. Each measure of 5 
divergence is slgnlficantly correlated with the 
other two measures. Spearman rank correlation 0 5 
coefficients are as  follows: r, = 0.82, P < 0.02 
(Nei's D - mtDNA); r, = 0.93, P < 0.001 (Nei's 
D - compatibility); and r, = 0.79, P i 0.03 
(mtDNA - compatibility). These coeff~cients are 0 

Tolerance (Til) Intolerance (ID) 

- 
Island - low a7 

- 
5 ."' 
,@ Island - mid 

- ....."' 6~ Mainland - low 

@I ,..2 3$'iainland - mid 

- 

'"' 

Taxa Passive Aggressive Compatibility 
Paired contacts Snaps contacts 

significant as  determined by the sequential Bon- 0.0 0.1 0.2 0.3 
ferroni method (28) Habltats for Pacific mem- Nei's D 
bers of pairs are indicated (25). The dotted llne connecting the origln and the most divergent pair 
shows a linear relation between the two biochemical measures that is consistent with the 
assumption of an lnitlal absence of genetic differentiat~on 
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and carbonate-associated benthic foramin- 
iferal communities of the southern Carib- 
bean were established (23). Hence, pairs 
P5-C5 and P6-C6 probably separated dur- 
ing the period of marked shoaling and 
environmental divergence preceding final 
closure. The  isolation of P7/P7' from C7 
perhaps occurred when the hypothesized 
earlier circulatory barrier was in  place, 
followed bv failure to interbreed when 
partial connection between the oceans 
was reestablished. Environmental transi- 
tions also appear to have prompted intrao- 
ceanic divergences (24). 

All the shrimps we s t ~ ~ d i e d  are shallow 
water, fully marine forms with planktonic 
larvae. However, they do show some distri- 
butional differences that could affect sensi- 
tivity to changing conditions associated 
with gradual rise of the isthmus. Pacific 
members of the most divergent pairs are 
found deeper in  the intertidal or are rare in 
habitats with heavy sedimentation (25) 
(Fig. 2). Thus, larval avoidance (26) of 
shoaling waters over the rising isthmus (6, 
7) may have accelerated genetic isolation of 
these pairs. 

Our data can also be used to estimate 
rates of divergence in  reproductive com- 
patibility. Even the least divergent pairs 
show substantial reproductive isolation, 
but considerable behavioral compatibility 
and sporadic production of fertile clutches 
occur (Table 2). This observation suggests 
that, as i n  other groups (5, 27), 3.0 to 3.5 
million years may be the minimum time 
required for development of strong repro- 
ductive isolation ~ lnder  the classic allopat- 
ric model of division into two large popu- 
lations without secondary contact. 
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Large Odd-Num bered Carbon Clusters from 
Fullerene-Ozone Reactions 

Stephen W. McElvany, John H. Callahan, Mark M. Ross, 
Lowell D. Lamb, Donald R. Huffman 

The odd-numbered carbon clusters C,,,, C,,,, and C,,, have been observed in the mass 
spectra of toluene extracts of fullerene soots and of the products of ozone-fullerene 
reactions. Specifically, ozone-C,, reactions yield C, ,,, ozone-C,, reactions yield C,,,, and 
ozone-(C,,/C,,) reactions produce C,,,, C,,,, and C,,,. These unexpected species 
correspond to dimers of C,,, C,dC,,, and C,,, respectively, less one carbon atom, and 
are stable gas-phase ions with behavior similar to that of fullerenes. The results suggest 
a new route to functionalization and derivatization of fullerenes through controlled ozone- 
catalyzed cage-opening reactions. 

Numerous  studies have shown that there 
is a wide variety of fullerene chemical 
reactions (1). For example, one unusual 
aspect of fi~llerenes is their ability to un- 
dergo coalescence reactions that result in  
larger fullerenes ( 2 4 ) .  Although the de- 
tails of these reactions vary, i n  all cases 
observed to date coalescence apparently 
was caused by photon-induced radiation 
damage of fullerenes, and in all cases the 
reaction products had even numbers of 
carbon atoms. 

In a recent mass-spectral investigation 
of large fullerenes. we detected the Dres- - 
ence of the odd-numbered, pure carbon 
clusters Cl19, C,,,, and C13, in toluene 
extracts of several fullerene soot samples, 
which we speculated to be the products 
of coalescence of two C6,'s, a C,, and 
C7, and two C 7 0 ' ~ ,  respectively. These 
laree. odd-numbered carbon clusters are - ,  

unexpected, given the overwhelming evi- 

A typical thermal desorption-negative 
ion mass suectrum (6 .  7) of a toluene ~, , 

extract (8) of a commercial soot sample 
(9) is shown in Fig. 1. Although not 
shown, C - and C70- are approximately 'to , lo3 to 10 tlmes more abundant than the 
base peak in this spectrum. As expected, 
the abundances of fi~llerene ions (C,-, n 
> 74) generally decrease with increasing 
size, with anomalously abundant C84 and 
C,,. However, in  addition to the even- ," 
numbered carbon clusters, ions are ob- 
served corresponding to Cl19, Clz9,  and 
C,,,. These odd-numbered carbon clusters 
were detected in  a commercially available, 
unchromatographed mixture of fullerenes 
(9), as well as in  toluene extracts of 
various fullerene soots [Polygon, SES (9), 
and "homemade" soot (7) produced at the 
Naval Research Laboratory]. 

In order to test the interpretation of the 

cess. In contrast to positive ion or laser 
desorption analysis, which may be compli- 
cated by fragmentation or coalescence of 
molecular species, previous studies of 
fullerenes indicate that thermal desorp- 
tion-negative ion analysis is much less 
prone to these artifacts (7). A second 
possibility was that these were not pure 
carbon molecules. T h e  relative ion abun- 
dances in  the distribution from mass-to- 
change (mlz) ratios 1428 to 1433 were 
measured to be identical (within experi- 
mental error) to those calculated for Cl19 
based o n  the natural 13C abundance (see 
inset of Fig. 1). Similar results were ob- 
tained for C,,, which indicated that these 
ions corresoond to odd-numbered all-car- 
bon species. (The abundance of C139, 
however, was too low to allow this type of 
analysis.) Further investigations showed 
that the presence of the odd-numbered 
carbon clusters is not affected by the sol- 
vent, as they are also observed in hexane 
and benzene extracts of fi~llerene-rich 
soot. Careful inspection of mass spectra 
(not shown) of the raw (~~next rac ted)  soot 
ievealed very low abundances of these ions 
(-500 times less abundant than neighbor- 
ing even-n C,,). This observation and the 
analysis of the soot toluene extract (Fig. 1) 
suggest that the odd-numbered clusters are -- 
more soluble than the comparably sized 
even-numbered fullerenes. In addition. 
the use of ammonia or argon instead of 
methane as the buffer gas in  the analvsis 
yielded similar results, indicating that ;he 
formation of odd-numbered clusters is not 
due to the buffer gas. 

As a complement to the negative ion 
analyses described above, electron ioniza- 
tion to generate positive ions of thermally 
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den& for thepreferential stability of large, 
Fig. 1. Negative ion mass 

even-numbered carbon clusters (5). Re- 100- 

sults from a subsequent series of ozonolysis 
experiments support this interpretation and 
suggest that oxidation plays a key role in 80- 

the production of these unusual species. 
These results have implications for several 
important issues in  fullerene chemistry, in- 4 60-  

cluding chemical reaction mechanisms and 2 
the resulting fullerene-based products, coa- 
lescence of filllerenes, and the molecular 40- 

structure consideration raised by the exis- 
tence of odd-numbered "fullerenes." 
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spectrum of a toluene ex- 
tract of graphitic soot with 
the inset showing the ex- 
panded region around 
c,,g- 
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