
patterns in class 1, but, for those in class 1, 
there is a substantial reduction in the num
ber of errors. The network typically corrects 
most of the errors or rejects a pattern as 
nonrecognizable. A network of 72 systems 
would be difficult to implement experimen
tally, but simulations of a smaller network, 
which could be implemented experimentally 
(22), show that this smaller network also 
possesses pattern recognition abilities, albeit 
to a lesser extent than the larger networks. 

The chemical network has many similar
ities and some differences with a neural 
network of the Little (15) or Hopfield 
(16-18) type: patterns are stored in both 
the chemical and the Hopfield network by a 
Hebbian rule, but the connection weights 
(ktj) may have either sign in a Hopfield 
network; the chemical systems must be 
bistable, but the neurons in a Hopfield 
network are typically monostable; and in 
both, stored patterns are stable steady states 
and are recalled when the network is ini
tialized in their basins of attraction. In an 
electrical realization of a neural network 
(17), the neurons are amplifiers, the con
nections are wires, the connection weights 
are resistors; their analogs in the chemical 
computer are the bistable reaction mecha
nisms, mass transfer, and the mass transfer 
rates. The chemical network shares many of 
the desirable features of neural network 
models: both are robust in the presence of 
noise, both retain some computational 
power when damaged, and, in both, the 
computational abilities are not strongly de
pendent on model parameters. Because the 
connection weights can be either positive 
or negative in the Hopfield network, as well 
as in our earlier chemical networks (1-3), 
they perform better than the network pre
sented here. The chemical implementation 
of parallel computers given here and in the 
earlier papers (1-3) provides a chemical 
basis of neural networks. 

There are many biological reaction 
mechanisms and biological systems with 
multiple stationary states; mass transfer 
among compartments in biological systems 
is ubiquitous. These are the necessary com
ponents of the pattern recognition device 
presented here, and the components are at 
least available in living systems. The pre
dictions for a small chemical network are 
experimentally verifiable. 
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Th e development of catalytic methods for 
the regio- and stereoselective synthesis of 
optically pure compounds has become an 
important focus in recent years (I) . A 
number of chemical reagents have been 
designed for demanding asymmetric trans
formations, including titanium (IV) tar
trate complexes for chiral epoxidations 
(2), rhodium and ruthenium catalysts for 
enantioselective hydrogenations (3, 4), 
osmium complexes for asymmetric dihy-
droxylations (5), and chiral boranes for 
stereoselective ketone reductions (6). 
However, while existing asymmetric cata
lysts have demonstrated impressive enan-
tioselectivities, the rational design of such 
catalysts is still in its infancy, and high 
stereoselection is usually contingent upon 
neighboring ligands or restricted sets of 
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substituents (7). Moreover, the ability to 
discriminate between chemically similar 
functional groups in the same molecule 
can often be achieved only by the appli
cation of extensive protecting group strat
egies, as in the synthesis of complex mol
ecules such as the macrolide antibiotics, 
carbohydrates, and peptides (8). 

The search for selective catalysts has 
also led to the increased use of enzymes in 
organic synthesis. Although high chemo-, 
regio-, and enantioselectivities have been 
achieved, enzymes often require expensive 
cofactors and are limited in number and 
selectivity (9-11). Given the extraordinary 
specificity of the immune system, we asked 
whether simple yet general strategies exist 
for generating antibodies that catalyze re
gio- and stereoselective functional group 
transformations. We chose the reduction of 
simple prochiral ketones as our initial tar
get, specifically the regio- and stereoselec
tive conversion of e-diketone 5 to hydroxy-
ketone 9 (Fig. 1). The similar chemical 
environments of the two carbonyl moieties 
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in diketone 5 (distinguishable only by 
methoxy and nitro groups five and six 
atoms away) render this transformation 
extremely difficult to achieve by current 
chemical methods. Furthermore, in order 
to avoid the need for cofactor recycling, 
the inexpensive reductant sodium cy- 
anoborohydride (NaBH,CN) was chosen 
as the hydride donor for the antibody- 
catalyzed reaction. 

Antibodies were raised against the ra- 
cemic N-oxide hapten 1 (Fig. 1). Earlier 
studies demonstrated that antibodies elic- 
ited to an achiral, nitrobenzyl phospho- 
nate hapten catalyzed the NaBH,CN-de- 

pendent reduction of an activated a-keto 
amide (12). However, none of these phos- 
phonate-specific antibodies appreciably 
catalyzed the reduction of the less activat- 
ed ketone substrates 2 to 5. We reasoned 
that antibodies specific for N-oxide 1 
should not only stabilize the tetrahedral 
transition state resulting from nucleo- 
philic attack on the carbonyl group but 
also direct regioselective addition of hy- 
dride to the nitrobenzyl-substituted carbo- 
nyl group of substrate 5. Moreover, the 
chiral environment of an antibody com- 
bining site induced by one of the two 
enantiomers of hapten 1 should discrimi- 

Fig. 1. Monoclonal antibodies raised against the keyhole limpet hemocyanin conjugate of hapten 1 
catalyze the NaBH3CN-dependent reduction of ketone substrates 2 to 4 and diketone 5.  

Fig. 2. Lineweaver-Burk plots for antibody-cata- 
lyzed ketone reduction. Reactions were per- 0.24- A 
formed in 45 mM NaCI, 50 mM MES buffer, pH 0,20- 
5.0, with (A) 1.6 or (B) 6.7 pM antibody and 5% 
(vlv) methanol. Velocities were determined at 0.16- 
22°C by monitoring the formation of alcohol with 0,12- 
an HPLC assay (Rainin Dynamax Microsorb re- 
versed-phase C,, column, 60% methanol in 0.08- 
0.1 % aqueous trifluoroacetic acid). Product 5 ,  0.04 - 
detected at 260 nm, was identified by coinjec- .;. 
tion with an authentic sample and quantified a 0.00 
against an enitroanisole internal reference. Ini- ,C -0.02 -O.O1 -O.OO O.O1 0.02 0.03 
tial rates were determined by linear fitting of the 9 0.2 B 
product concentration at five time points. (A) The y 
concentration of 2 was varied from 50 to 250 pM 2 
while [NaBH3CN] remained constant at 50 mM. 
(B) The NaBH3CN concentration ranged from 5 
to 100 mM while [2] was held at 150 pM. 0.1 ' 

nate between the enantiotopic faces of a 
prochiral substrate, affording a highly ste- 
reoselective reduction. This simple hapten 
design would provide a versatile strategy 
for the reduction of a broad range of 
compounds because N-oxide haptens are 
readily synthesized by oxidations of the 
corresponding amines. 

Hapten 1 was conjugated to carrier 
proteins bovine serum albumin (BSA) and 
keyhole limpet hemocyanin (KLH) 
through amide linkages (1 3). Twenty-five 
monoclonal antibodies specific for N-ox- 
ide 1 were generated by using standard 
protocols and purified by protein A affinity 
chromatography as described previously 
(1 4). Twelve of these antibodies accelerated 
the NaBH3CN-dependent reduction of ni- 
trobenzyl ketone 2. Reduction was assayed at 
22°C in 45 mM NaC1, 50 mM MES buffer, 
pH 5.0, by following the appearance of prod- 
uct with high-performance liquid chromatog- 
raphy (HPLC). The kinetic parameters for 
one antibody (37B.39.3) were characterized 
further. 

Antibody 37B.39.3 displayed saturation 
kinetics with respect to both substrate 2 
and NaBH3CN (Fig. 2). A Lineweaver- 
Burk analysis of the steady-state data at 
high NaBH,CN concentration (50 mM) 
afforded an apparent catalytic constant 

) of 0.097 min-', a Michaelis con- 
:k?[Km,,pd of 52 pM, and a second- 
order rate constant (k,,, ,,,, /Km,,,,) of 1.9 x 
lo3 min-' M-' for substrate 2. For com- 
parison, the second-order rate constant for 
the uncatalyzed reaction (k,,,,,) was 1.1 x 
lop3 min-' M-'. Examination of the 
NaBH,CN dependence of the antibody- 
catalyzed reduction at fixed ketone concen- 
tration (150 pM) revealed rate constants 
kc,,,,,, of 0.17 min-' and K,,,,, of 57 mM 
(15). Greater than 25 turnovers per anti- 
body molecule were measured with no ob- 
servable change in activity, suggesting that 
NaBH,CN does not significantly inactivate 
the antibody. The specific activity of 
37B.39.3 remained unchanged after further 
purification by anion (MONO-Q) ex- 
change chromatography. 

The antibody-catalyzed reaction was 
completely inhibited by the addition of 50 
p.M hapten. Fluorescence quenching exper- 
iments ~erformed in the reaction buffer at 
22°C afforded dissociation constants (Kd) of 
33 nM for racemic N-oxide 1 and 150 nM 
for substrate 2, indicating that the antibody 
binds the transition state analog more tight- 
ly than the substrate (1 6). Similar experi- 
ments in which racemic product 6 was used 
gave a Kd of 200 nM, close to that of the 
sp2-hybridized substrate. 

Further analysis revealed that the re- 
duction of substrate 2 was highly ste- 
reospecific: secondary alcohol 6- (S) was 
obtained in enantiomeric excess (ee) of 
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96.0% (1 7) (Table 1). Interestingly, while 
antibody 37B.39.3 demonstrated a strong 
ability to discriminate between the enan- 
tiotopic faces of nitrobenzyl ketone 2, it 
tolerated a broad range of side chains. The 
reduction of substrates 3 and 4, which 
contain branched and aryl side chains, 
resulted in 95.5 and 86.7% ee, respective- 
ly. These results are consistent with earlier 
studies which suggest that antibody bind- 
ing specificity is relatively insensitive to 
elements of the hapten and substrate close 
to the conjugation site (1 2, 18). At the same 
time, the high stereoselectivity obtained for 
the reduction of substrate 4 (in which the 
carbonyl substituents are distinguishable 
only by the nitro group) reflects the extraor- 
dinary specificity attainable with the anti- 
body molecule. Screening of additional an- 
tibodies should provide a catalyst that pro- 
duces alcohols of absolute (R)-configuration 
because there is no apparent stereochemical 
bias in the immune response. 

In order to investigate the regioselectiv- 
ity of antibody 37B.39.3, the reduction of 
diketone 5 was assayed in 45 mM NaC1, 50 
mM MES buffer, pH 5.0 (1 9). The anti- 
body-catalyzed reduction of diketone 5 was 
highly regioselective, affording alcohol 9 in 
95.5% yield (2.5 hours, 57% conversion). 
Only minor amounts of products 10 and 
11 were observed (0.6 and 3.9%, respec- 
tively). The ratio of the reduction rates 
(Vtel) of the nitrobenzyl carbonyl moiety 
relative to the methoxybenzyl carbonyl 
moiety was -75. In contrast, the nitroben- 
zyl carbonyl group was reduced more slowly 
than the methoxybenzyl carbonyl group in 
the uncatalyzed reaction (Vtel = 0.74), 
consistent with an acid-catalyzed mecha- 
nism. In addition to exhibiting high regi- 
oselectivity, the antibody-catalyzed reduc- 
tion was stereoselective, affording the (S)- 

Table 1. Enantioselectivity of the antibody-cat- 
alyzed reduction of nitrobenzyl ketones 2 to 5. 
The reported values represent the average of 
two experiments. 

Alcohol product ee (%)* 

'The enantiomeric excess for the antibody-catalyzed 
reaction was determined by extracting the products 
into 2-butanone and analyzing the composition by 
HPLC (Chiralpak AD column, Daicel Chemical Indus- 
tries, 95:5 hexanesl2-propanol, 1.0 rnllmin). Products 
were identified by coinjection with authentic samples 
and compared against the corresponding uncata- 
lyzed reaction by using an enitroanisole internal stan- 
dard. Products 8,7 ,  and 8 were obtained after 33, 13, 
and 37% conversion, respectively. Reaction mixtures 
contained 250 pM substrate, 50 mM NaBH,CN, and 
4.4 KM antibody. Product 9 was analyzed after >99% 
conversion by using 50 KM substrate, 7 mM 
NaBH,CN, and 27 pM antibody. 

enantiomer of product 9 in 96.3% ee. 
This model study suggests the potential 

for exploiting the specificity of antibody 
molecules to perform highly selective 
functional group transformations, regard- 
less of chemical environment and sub- 
strate complexity. The generation of cat- 
alytic antibodies with predetermined se- 
lectivities is more easily achieved than the 
design of small molecule catalysts. Al- 
though the smaller size of the latter may 
provide broader substrate specificities, the 
simple strategy presented herein may find 
general applicability to the regio- and 
stereoselective reduction of a wide range 
of complex compounds. 
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