
plasmic extracts of 32P-labeled cells that 
had been treated with IFN-y for 3 min. A 
peptide corresponding to peptide 1 from 
whole cell extracts was detected (Fig. 5B). 
Immunoprecipitates of nuclear extracts 
contained little ,'P-labeled 91-kD protein 
after only 3 min of treatment (1 6). 

,'P-labeling of peptide 1 was greatly 
diminished by the treatment of cells with 
staurosporine (Fig. 5B) whereas labeling of 
the phosphoserine-containing peptides was 
not affected. Staurosporine also blocked- 
binding of GAF to DNA (Fig. 4C); thus 
tyrosine phosphorylation appears to be the 
IFN-y-dependent modification necessary 
for the activation of GAF. 

These experiments indicate that the 
specificity of the cytoplasmic response to 
IFN-a and IFN-y results from differential 
tyrosine phosphorylation of the 113-, 91- 
and 84-kD proteins (Fig. 6). Two different 
kinases may be required for the two differ- 
ent ligand-specific pathways (7). The mu- 
tant cell line l l .  1 which does not respond 
to IFN-a, completely lacks the Tyk-2 
mRNA and the Tyk-2 protein (7) but does 
activate genes in response to IFN-y (19), 
suggesting that the response to IFN-y must 
be mediated through another kinase. At 
present two other members OAK1 and 
JAK2) (20, 21) are known of the same 
kinase family as Tyk2, one of which, JAKl 
is increased in mRNA concentration in 
cells treated with IFN-y (22). 

The 91-kD protein can function in tran- 
scriptional activation in two different ways. 
In cells treated with IFN-a, the 91-kD 
protein participates in a high-affinity DNA 
binding complex for the ISRE (23) but does 
not itself contact DNA (4). Moreover, in 
cells treated with IFN-a most of the phos- 
phorylated 91-kD protein is used in forming 
ISGF-3. In cells treated with IFN-y the 
tyrosine phosphorylated 91-kD protein does 
bind to DNA, but at a different DNA 
element, the GAS. Other proteins have 
been described that participate in DNA- 
protein interaction either alone or in com- 
bination with other proteins (24) but those 
proteins have not been shown to be phos- 
phorylated on tyrosine. 
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Range of Messenger Action of Calcium Ion and 
lnositol 1,4,5-Trisphosphate 

Nancy L. Allbritton, Tobias Meyer, Lubert Stryer 
The range of messenger action of a point source of Ca2+ or inositol 1,4,5-trisphosphate 
(IP,) was determined from measurements of their diffusion coefficients in a cytosolic extract 
from Xenopus laevisoocytes. The diffusion coefficient (D) of [3H]IP3 injected into an extract 
was 283 pm21s. D for Ca2+ increased from 13 to 65 pm21s when the free calcium 
concentration was raised from about 90 nM to 1 pM. The slow diffusion of Ca2+ in the 
physiologic concentration range results from its binding to slowly mobile or immobile 
buffers. The calculated effective ranges of free Ca2+ before it is buffered, buffered Ca2+, 
and IP, determined from their diffusion coefficients and lifetimes were 0.1 pm, 5 pm, and 
24 pm, respectively. Thus, for a transient point source of messenger in cells smaller than 
20 &m, IP, is a global messenger, whereas Ca2+ acts in restricted domains. 

T h e  transduction of manv hormonal and 
sensory stimuli is mediated by transient 
increases in the concentration of intracel- 
lular free calcium ([Ca2+Ii). Ca2+ influx 
into the cvtosol can be induced bv (i) , ~, 

opening of voltage-gated and receptor-op- 
erated Ca2+ channels in the plasma mem- 
brane; (ii) binding of receptors that activate 
the phosphoinositide cascade, which leads 
to the production of inositol 1,4,5-trisphos- 
phate (IP,) and the consequent opening of 
channels on internal Ca2+ stores; and (iii) 
the activation of ryanodine-receptor chan- 
nels (1). The resulting increase in [Ca2+], is 
then detected by Ca2+ sensors that alter the 
activities of enzymes, pumps, and other 
targets. Many activated cells display repeat- 
ed Ca2+ soikes or oscillations and Ca2+ 
waves (1 -3). These macroscopic responses 

N. L. Allbritton and L. Stryer, Department of Cell 
Biology, Stanford University, Stanford, CA 94305. 
T. Meyer, Department of Cell Biology, Duke University, 
Durham, NC 27710. 

are produced by the spreading, amplifica- 
tion, and deactivation of localized increases 
in [Ca2+Ii. Knowing the range of action of 
spatially localized impulses of Ca2+ and IP, 
is therefore fundamental to understanding 
Ca2+ signaling. Previous measurements of 
the diffusion constants of these messengers 
did not eliminate interfering processes such 
as sequestration, degradation, and messen- 
ger amplification; this was appreciated by 
the investigators (4). 

We measured the diffusion coefficients of 
Ca2+ and IP, in a cytosolic extract from 
X m p u s  oocytes (5). Measurement of IP, 
diffusion requires inhibition of its degradation, 
which typically occurs in -1 s (6). Degrada- 
tion was blocked by chelating divalent cat- 
ions, which are required for activity by the 
5'-phosphomonoesterase and IP3-kinase (Fig. 
1A) (7 ) .  To avoid sequestration of Ca2+ by 
internal stores, which would affect the mea- 
sured diffusion coefficient for Ca2+, we added 
thapsigargin to inhibit Ca2+ pumps; hexoki- 
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nase and elucose to lower the adenosine tri- 
phosphate" (ATP) concentration; and carbo- 
nyl cyanide p-(trifluoromethoxy)phenylhy- 
drazone (FCCP) to block mitochondria1 se- 
questration (Fig. 1B). Excess cytoplasmic 
Ca2+ that leaked into the cytosol was re- 
moved by passing the extract through a col- 
umn to remove Ca2+ (5, 8). The concentra- 
tion of free Ca2+ in this preparation was 
- 100 nM (9). The effectiveness of this treat- 
ment was shown by the finding that less than 
3% of added 45Ca2+ was sequestered (1 0). 

[,H]IP, or 45Ca2+ was layered on top of 
a cytosolic extract contained in a thin tube 

I 
0 10 20 30 40 

Elution time (rnin) 

and allowed to diffuse for various periods of 
time (1 I). The tube was then frozen and 
sliced, and the concentration of labeled 
messenger in each slice was determined (1 1, 
12) (Fig. 2, A and B). The measured D 
values, which were nearly independent of 
the incubation time, were 38 a 11 pm2/s (n 
= 9) for Ca2+ and 283 a 53 pm2/s (n = 6) 
for IP,. The effective viscosity of the cyto- 
solic extract was determined by measuring 
the diffusion of 22Na+ and 1251-labeled im- 
munoglobulin G (IgG) (Fig. 2C). The mea- 
sured D values of 790 a 127 p,m2/s (n = 4) 
and 27 8 pm2/s (n = 4) for Na+ and IgG, 
respectively, are close to those measured in 
muscle cells or predicted by theory for a 
medium of twice the viscosity of water (13, 
14). IP, diffused faster than Ca2+ (Fig. 2D). 
The D values were 35 pm2/s for Ca2+ and 
268 p,m2/s for IP,. For comparison, the 
calculated D values for unbound Ca2+ and 
IP, in a medium with twice the viscositv of 

800 

600 
h 

F - 
9 '3 400- 

water are 370 and 250 pm2/s, respectively 
(13, 15). 

B 
- 

Distance (mm) 5 
f! 
L 

'0 I 0 2'0 3'0 40 
Time (rnin) 

Fig. 1. Extent of IP, breakdown and Ca2+ 
uptake during the diffusion experiments. (A) 
Cytosolic extract (50 pl) was incubated with 
100 nM [,H]IP, in the presence (solid line) or 
absence (dashed line) of 30 mM EDTA for 60 
min at room temperature (26). Only 8% of the 
IP, in the sample with EDTA was metabolized 
as measured by HPLC. [3H]inositol l-phos- 
phate, [3H]inositol 1,4-bisphosphate, [3H]inosi- 
to1 1,4,5-trisphosphate, and [3H]inositol 1,3,4,5- 
tetrakisphosphate were eluted at 4, 5, 13, and 
36 min, respectively. Units on the y axis indi- 
cate the percentage of the total amount of 
radioactivity added to the extract. (B) At time 0, 
cytoplasm (35 p1) was added to a cuvette 
containing 2 ml of XB buffer (4) with 0.25 pM 
fluo-3, 1 mM Mg2+, and either 1 mM ATP (solid 
line) or 40 pM thapsigargin and 1 pM FCCP 
(dashed line), and the mixture was stirred. 
Ca2+ was added to the solutions at times 
marked by the arrows (27). 

Distance (mm) 

The D value for Ca2+ depended on the 
concentration of Ca2+ added to the cytosol 
(Fig. 3). Decreasing the concentration of 
diffusing 45Ca2+ by a factor of ten decreased 
the D of Ca2+ to 13 8 pm2/s (n = 4) 
(1 6). Conversely, D increased to 200 pm2/s 
if 1 mM CaC12 was added to the extract 
before the diffusion experiment was done. 
To determine the relationship between 
added and free Ca2+, the free Ca2+ con- 

Table 1. Estimated range and time scale of 
messenger action of Ca2+ and inositol 1,4,5- 
trisphosphate. 

Diffusion Time Range 
Messenger coefficient scale 

(pm2is) (s) (pm) 

Calcium 
Free ion 223 0.00003 0.1 
Buffered 13 1 5 

lnositol 280 1 24 
1,4,5-trisphosphate 

Distance (mm) 

Distance (mm) 

Fig. 2. Measurement of D for Ca2+ and IP, in cytosol from Xenopus oocytes. (A) 45CaC12 (44 pM) 
was allowed to diffuse in extract with inactive stores in the presence of 1 mM MgCI,, 40 pM 
thapsigargin, and 1 pM FCCP for 15 (squares), 30 (circles), or 60 (triangles) min. The Dvalues were 
37, 25, and 35 pm2/s, respectively. Data were normalized for plotting by setting the value of the first 
time point equal to one. The lines are fits of the data to Fick's Law (12). (B) [,H]IP, (1.5 pM) was 
allowed to diffuse for 15 (squares), 30 (circles), or 60 (triangles) rnin in extract containing 30 mM 
EDTA. D was 295, 274, and 268 pm2/s, respectively. (C) 22NaCI (4.5 pM) or 1251-labeled IgG (20 
pglml, rabbit antibody to mouse IgG) was allowed to diffuse for 30 min (""Na+, circles) or 60 min 
(1251-labeled IgG, squares). The extract for IgG but not Na+ diffusion contained 10 mM EDTA to 
decrease proteolysis of the IgG. (D) In 1 hour, IP, (circles) diffused much farther than 45CaC12 
(squares). 
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Calcium Added (pM) 
1 10 100 1000 

Free calclum (pM) 
Fig. 3. Dependence of D for Ca2+ on the 
concentration of free Ca2+ and the amount of 
added Ca2+. The concentration of free Ca2+ 
was determined as described in the text. The 
average concentration of added Ca2+ was de- 
termined as described (28). The concentration 
of 45Ca2+ was calculated from the amount 
loaded and the volume over which it diffused. 
The dashed line was drawn empirically. 

centration was measured fluorimetrically 
(9). Addition of 13 pM or 100 pM Ca2+ 
gave free Ca2+ concentrations of 1 and 20 
pM, respectively. As the Ca2+ concentra- 
tion was increased, D became larger be- 
cause a smaller proportion of the Ca2+ was 
bound. The measurements also suggest that 
the dissociation constants of Ca2+ buffer 
sites range from less than 1 pM to more 
than 10 pM. In contrast, decreasing the 
amount of IP, by a factor of ten did not alter 
the D of IP, (1 6); thus, IP, is not apprecia- 
bly bound to buffers. 

The diffusion coefficient of the messen- 
ger that propagates Ca2+ waves can be 
estimated from the relationship D = uA, 
where u is the velocity of the wave, and A is 
the length of the concentration gradient at 
the wave front (1 7). D has also been esti- 
mated from the slope of the relationship 
between the curvature and velocity of cir- 
cular waves (2). These experimental ap- 
proaches indicate that D of the propagating 
messenger is between 300 and 600 pm2/s. 
These limits make IP,, but not Ca2+, an 
attractive candidate for the mobile messen- 
ger in calcium wave propagation (1 8, 19). 

The range of action of a spatially local- 
ized impulse of IP, or Ca2+ can be approx- 
imated by the equation s -- (207) 'I2, where 
T is the time scale of messenger action 
(Table 1) (20). The value of T for IP, was 
determined by its degradation time of about 
1 s in rat basophilic leukemia cells and 
smooth muscle cells (6). The measured D 
for IP, was 280 pm2/s; hence, s is -24 pm. 
For free Ca2+, T is given by the time needed 
to bind to buffers, (koncb) -', where k, is the 
on-rate of a typical calcium buffer, 10' M-' 
s-' (21), and cb is the concentration of 
Ca2+ buffers, about 300 pM (22). These 
values give a T of 3 x lop5 s for free Ca2+. 
The measured D was 223 pm2/s, and so s is 

-0.1 um. For buffered Ca2+. T is deter- 
mined'by the time for sequestration into 
stores, about 1 s (1). Because D was 13 
pm2/s, s for buffered Ca2+ is -5 pm. 

The rapid buffering of Ca2+ makes it a 
localized messenger for effector systems that 
require high concentrations of Ca2+ for 
activation. Such effectors must be less than 
-0.5 pm from a calcium source, such as a 
voltage-gated calcium channel on the plas- 
ma membrane. For example, synaptotag- 
min, a calcium sensor in synaptic vesicle 
membranes (23), is activated by high (- 10 
pM) but not moderate (-1 pM) [Ca2+],. 
The effect of buffering is to markedly lower 
the concentration of free Ca2+ and slow its 
diffusion. This creates a second domain 
with a much lower peak concentration of 
Ca2+ and a range of about 5 pm. Effectors 
with high affinity for Ca2+, such as those 
stimulated by calmodulin, can be activated 
in this domain (24). In contrast, IP, has a 
much larger domain of messenger action 
because it is virtually unbuffered and has a 
lifetime of -1 s. The -24-pm range of IP, 
indicates that it serves as a global messenger 
in most cells. IP, could be a localized 
messenger with a 1-pm range only if it were 
degraded 1000 times more rapidly than has 
been observed (25). 
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