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Expression of an Inward-Rectifying Potassium 
Channel by the Arabidopsis KA T 1 cDNA 

Daniel P. Schachtman, Julian I. Schroeder, William J. Lucas, 
Julie A. Anderson, Richard F. Gaber 

Inward-rectifying potassium channels located in the plasma membrane of higher plant and 
animal cells contribute to cellular homeostasis and excitability. The genes encoding this 
specific class of K+ channels have not been functionally identified. This report shows that 
a single messenger RNA transcript from the Arabidopsis thaliana KATl complementary 
DNA confers the functional expression of a hyperpolarization-activated K+ channel in 
Xenopus oocytes. The channels encoded by KATl are highly selective for K+ over other 
monovalent cations, are blocked by tetraethylammonium and barium, and have a single- 
channel conductance of 28 ? 7 picosiemens with 1 18 millimolar K+ in the bathing solution. 
These functional characteristics, typical of inward-rectifying K+ channels in eukaryotic 
cells, demonstrate that KATl encodes an inward-rectifying K+ channel. 

Analysis and manipulation of cDNAs en- 
coding outward-rectifying K+ channels ( I )  
has led to an understanding of how compo- 
nents of the primary protein structure con- 
tribute to functional characteristics such as 
voltage-dependent activation (2) and ionic 
conductivity (3). Although inward-rectify- 
ing K+ channels regulate excitability in 
animal cells (4) and K+ uptake in higher 
plant cells (5, 6),  little is known about the 
protein structure of this class of ion chan- 
nels. 

Two cDNAs, AKTl and KATl, were 
cloned from the higher plant Arabidopsis 
thaliana (7, 8) by the complementation of 
Saccharomyces cerevisiae mutants deficient 
in K+  uptake (9). AKTl and KATl share 
some amino acid similaritv to outward- 
rectifying K+ channels in a voltage-sensing 
domain (S4), in an ion-conducting pore- 
forming region (H5), and in the predicted 
topology of the core region of the protein 
(7, 8). Despite structural similarity between 
AKTl and KATl and outward-rectifying 
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K+ channels, these plant genes completely 
restored K+ uptake to yeast mutants. From 
patch clamp studies on guard cells, K+ 
uptake into plant cells has been ascribed to 
proton pump-driven K+ influx through in- 
ward-rectifying K+ channels (5, 10-12). 
Therefore, characterization of the KATl 
cDNA by heterologous expression in Xeno- 
pus laevis oocytes was initiated to determine 
whether the protein encoded by KATl 
functions as a voltage-activated inward- 
rectifying K+ channel. 

Uninjected or water-injected control 
oocytes were analyzed in all experiments 
and showed only small currents in response 
to hyperpolarizing pulses (Fig. 1, A and D) 
that activated at membrane potentials more 
negative than -145 k 14 mV [n = 20; 
mean k SD]. These endogenous currents 
have been suggested to be carried by chlo- 
ride ions (13). In 65 oocytes (from ten 
frogs) injected with mRNA synthesized 
from the KATl cDNA (14), large inward 
currents were measured that were activated 
by hyperpolarization of the membrane po- 
tential to values more negative than - 102 
+ 13 mV (n = 14) (Fig. 1, B and D). 
Currents were not elicited by depolarization 
of the membrane potential in injected 
oocytes (Fig. 1, C and D). Inward current 
magnitude was 1.2 1- 0.5 FA (n = 23) at 
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-150 mV, 18 to 40 hours after injection 
with mRNA. The time- and voltage-depen- 
dent activation of the current in oocytes 
injected with KATl mRNA is characteris- 
tic of inward-rectifying K+  channel cur- 
rents in higher plants (5, 10-1 2). 

We determined the ion selectivity of the 
KAT1 -induced hyperpolarization-activated 
currents by measuring the change in ampli- 
tude of the current in whole oocytes when 
115 mM KC1 in the bathing solution was 
replaced with equimolar concentrations of 
RbC1, NH4C1, CsC1, NaC1, or LiCl (15). 
Replacement of KC1 with CsC1, LiC1, and 
NaCl resulted in a large reduction of the 
hyperpolarization-activated current (Fig. 2, 
B and D and Table 1). However, Rb+ and 
NH,+ showed a relative conductance of 
approximately 30% with respect to the K+ 
conductance (Table 1 and Fig. 2, C and 
D). After re-exposure of oocytes to K+  
Ringer solution, 85 + 6% of current was 
recovered after removal of NH,+, and 95 + 
23% of current was recovered after removal 
of Cs+. Within the limits imposed by the 
two-electrode voltage clamp method (1 6), 
reversal potentials of tail currents were de- 
termined to be -6 & 6 mV (n = 8) in 118 
mM K+ and -48 + 4 mV (n = 3) in 12 
mM K+ (15). The change in external K+ 
concentratio11 from 118 to 12 mM would 
result in a reversal potential shift of -52 
mV for a perfectly selective K+ channel, 
after correction for ionic activities (1 0). A 
reversal potential of -30 1+- 8 mV (n = 4) 
was measured with 115 mM NH,+ in the 
bath, giving rise to a permeability ratio of 
PNH4+IP,+ = 0.42. These data show that 
inward-rectifying KAT1 -associated currents 
are selective for K+ over other monovalent 
cations. The ionic selectivity of the inward- 
rectifying current (Table 1) is similar to K+ 
selectivities of inward-rectifying K+ chan- 
nels in various organisms (4, 5, 10-12). 

The ability of KATl to restore growth to 
S. cerevisiae mutants on K+ -limiting medi- 
um is inhibited by the K+ channel blockers 
tetraethylammonium (TEA+) and barium 
(8). When the extracellular bath solution 
was perfused with 115 mM KC1 containing 
TEA+ or Baz+, KAT1-evoked currents in 
oocytes were reduced (Fig. 3). At a mem- 
brane potential of -130 mV, 10 mM 
TEA+ blocked 81 + 10% (n = 4), 1 mM 
BaZ+ blocked 38 -+ 18% (n = 2), and 10 
mM BaZ+ blocked 70 * 11% (n = 4) of the 
inward-rectifying K+  current. After perfu- 
sion with K+ Ringer solution that did not 
contain TEA+, 90 -+ 11% of the initial 
current was recovered, whereas 68 * 25% 
of the initial current was recovered after the 
removal of 10 mM BaZ+. The blockage of 
the KAT1-mediated current by Ba2+ and 
TEAf is similar to that observed for in- 
ward-rectifying K+ channels in plant and 
animal cells (5, 17). 

Table 1. Conductance ratios of the KATl channel to monovalent cations. Values ( S D )  were 
measured at the end of 1.5-s pulses at a membrane potential of -130 mV and are relative to the K+ 
conductance. 

% KC conductance 100 28 + 13 7 ? 8  9 ? 1 1  6 + 3 30? 12 
Number of oocytes 25 5 4 4 3 11 

To analyze single-channel properties of 
KAT1 -induced Kf currents, we studied 
oocytes expressing KATl cDNA and unin- 
jected control oocytes by cell-attached patch 
clamp recordings (1 8). Typical KAT1 -in- 
duced single-channel currents elicited by 
membrane hyperpolarization are shown in 
Fig. 4. These ion-channel currents were not 
detected in 17 cell-attached ~atches from 
uninjected oocytes. The slope conductance of 
the KAT1 inward-rectifymg K+ channel was 
28 + 7 pS with 118 mM K+ on the extracel- 
lular membrane side. The single-channel con- - 
ductance measured in these experiments is in 
the range of inward-rectifying K+ channel 
conductances in guard cells and barley aleu- 
rone cells (5, 12). 

Other properties of KAT1 -mediated in- 
ward-rectifying K+  channels were also char- 
acteristic of inward-rectifying K+  channels 
described in higher plant cells. KAT1-in- 
duced currents showed no significant inac- 
tivation during continuous hyperpolariza- 
tions of 2 min (lo),  and the activation 
potential of the channels depended only 
moderately on the extracellular K+ concen- 
tration (1 9), as in guard cells (1 0, 20). 

The voltage- and time-dependent acti- 
vation, ionic selectivity, blockage by TEA+ 
and BaZ+, single-channel conductance, 
and lack of inactivation of the KATl cur- 
rent show that this cDNA encodes an 
inward-rectifying K+  channel similar to 
those found in higher plants (5, 10-12). 

D Membrane potential (mV) 

Uninjected 
A Injected depolarized 
.Injected hyperpolarized -800tl 

Fig. 1. Arabidopsis thaliana KATl 
cDNA confers functional expres- 
sion of hyperpolarization-activat- 
ed currents in Xenopus oocytes. 
Currents were elicited in re- 
sponse to hyperpolarizing pulses 
from a holding potential of -60 
mV in uninjected oocytes (A) and 
in oocytes injected with KATl 
mRNA (B) with K* Ringer solution 
in the bathing medium (15). (C) 
Currents elicited in response to 
depolarizing pulses from a hold- 
ing potential of -60 mV in 
oocytes injected with KATl 
mRNA. (D) Currents at the end of 
pulses shown in (A), (B), and (C) 
are plotted as a function of ap- 
plied voltage-pulse potentials. 

SCIENCE VOL. 258 4 DECEMBER 1992 



Whether inward-rectifying K+ channels in 
animal cells are related in structure to the 
KATl channel remains to be determined. 
The extensive amino acid sequence identity 
between AKTl (7) and KATl (8) suggests 
that there may be a family of genes encod- 
ing inward-rectifying K+ channels in the 
Arabidopsis thaliana genome. Injection of 
~ l a n t  cRNA ~ o o l s  shows that oocvtes also 
functionally express plant outward-rectify- 
ing K+ channels in addition to the KATl 
inward-rectifying K+ channel (21). 

Potassium is an essential macronutrient 
for plant growth (22). Biophysical, pharma- 
cological, and cell biological studies on 
guard cells have led to the suggestion that 
inward-rectifying K+ channels provide the 
major low-affinity pathway for K+ uptake 
into higher plant cells (5, 10-12, 20). The 
electrogenic proton-extruding adenosine 
triphosphatase (ATPase) in the plasma 
membrane of plant cells hyperpolarizes the 
membrane to sufficiently negative poten- 
tials (23) to open inward-rectifying K+ 
channels and drive physiological fluxes of 
K+ through these channels (5, 20). Be- 
cause inward-rectifying K+ channels in 
plants show no significant inactivation 
(lo),  this mechanism would allow long- 
term proton pump-driven K+ uptake into 
plant cells. 

An additional property of the KATl 
channel is a significant NH,+ conductance 
(Fig. 2C). Ammonium ions are taken up by 
plants and used for nitrogen nutrition (24). 
Because the KATl channel is permeable to 
NH4+, and NH4+ may inhibit K+ absorp- 
tion in some cultivars (25), we suggest that 
inward-rectifying K+ channels may also 
provide a pathway for ammonium influx 
into plant cells. 

A conspicuous property of the KATl 
channel lies in its hyperpolarization-in- 
duced activation. All other cloned voltage- 
dependent Na+, K+, and CaZ+ channels 
are activated by depolarization. The con- 
served S4 domains in these channels (26) 
have been modeled as a central structural 
component that undergoes transmembrane 
movement in response to depolarization, 
thereby enabling channel opening (2, 27). 
The KATl protein contains five positively 
charged residues located within the hydro- 
phobic amino acids that constitute the 
fourth transmembrane domain (%-like), a 
motif that is suggestive of the S4 domain in 
outward-rectifying K+  channels (1, 7, 8, 
26). Our results indicate that an S4-like 
domain can also be present in a hyperpo- 
larization-activated ion channel. There are 
several possibilities by which the S4-like 
domain in the KATl inward-rectifying K+ 
channel mav contribute to activation in 
response to membrane hyperpolarization. 
First, factors such as higher order protein 
structure or domains outside the S4 domain 

Membrane potential (rnV) 

D 6160 -120 -80 -40 0 
-10 

- -400 

z 
--800 5 

C 
C 

--I200 g 
- -1 600 0' 

C 
Membrane potential (mV) 

--I 80 -1 20 -60 0 

Fig. 2. Ion selectivity of inward 
currents in an oocyte injected with 
KATl mRNA. Currents were 
evoked in response to hyperpo- 
larizing pulses from a holding po- 
tential of -60 mV. The solution 
bathing oocytes contained (A) 
115 mM KCI, (B) 115 mM CsCI, 
and (C) 115 mM NH,CI (15). (D) 
Currents at the end of pulses 
shown in (A), (B), and (C) are 
plotted as a function of applied 
voltage-pulse potentials. 

Fig. 3. TEAt blocks KAT1-medi- 
ated inward-rectifying K+ cur- 
rents. Inward currents were elicit- 
ed in response to hyperpolarizing 
pulses with (A) K C  Ringer solution 
bathing an oocyte and (B) KC 
Ringer solution supplemented 
with 10 mM TEA+ in the extracel- 
lular solution of the same oocyte. 
(C) Currents at the end of pulses 
shown in (A) and (6)  are plotted 
as a function of applied voltage- 
pulse potentials. 
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Fig. 4. Cell-attached recordings 
of KAT1 mRNA-mediated single-
channel currents in oocytes. (A) 
Recordings in the cell-attached 
configuration with K+ Ringer solu­
tion (15) in the pipette, which 
faced the extracellular side of the 
membrane surface {28). Hyper-
polarizing pipette potentials 
(-Vp) (28) are indicated to the 
right of recorded current traces. 
(B) Mean amplitude of single-
channel currents as a function of 
hyperpolarizing pipette potentials 
(-Vp). The curve was determined 
by linear regression analysis, re­
sulting in a single-channel con­
ductance of 34 pS in the illustrat­
ed patch. Single-channel current 
amplitudes (mean ± SD) were 
determined by analysis of >20 
openings at each potential. 

****>yMi**y*yA-<n 

-Vp (mV) 

-40 

5 P A [ _ 

-60 

-80 

-100 

40 ms 

B 

may contribute to gating (2). Second, hy-
perpolarization of the membrane potential 
may be sufficient to initiate the movement 
of the KAT1 S4-like domain in the oppo­
site direction to that suggested for depolar­
ization-activated ion channels (27). Third, 
the S4-like domain may be inserted into the 
plasma membrane such that the orientation 
of this domain along with the other trans­
membrane domains in the KAT1 channel 
(8) is reversed when compared with the 
orientation of the membrane-spanning re­
gions in outward-rectifying K+ channels (3, 
27). Further studies will be required to test 
these and other possible models. 

In conclusion, the KATl cDNA en­
codes an inward-rectifying K+ channel with 
properties that correlate closely to those 
described in higher plants. Structural simi­
larities to outward-rectifying K+ channels 
in animals suggest that these genes share 
common ancestral origins. 
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Thermal Stability Comparison of Purified Empty and 
Peptide-Filled Forms of a Class I MHC Molecule 

Margaret L. Fahnestock, llana Tamir, Linda Narhi, 
Pamela J. Bjorkman* 

A secreted form of a class I major histocompatibility complex (MHC) molecule was de- 
natured and renatured in vitro in the absence of peptide. The resulting empty class I 
heterodimer was immunologically reactive and structurally similar to a heterodimer rena- 
tured in the presence of an appropriate restricted peptide. Thermal stability profiles indi- 
cated that the two forms of heterodimer differed in their resistance to denaturation by heat 
but that a significant portion of the empty class I heterodimers had a native conformation 
at physiological temperatures. Free energies calculated from these data gave a direct 
measure of the stabilization of the class I MHC molecule that resulted from peptide binding. 

Class I MHC molecules bind short pep- 
tides derived from intracellular proteins 
that are transported along with the MHC 
molecule to the cell surface, where the 
complex is recognized by the antigen-spe- 
cific receptor on a T cell (1). For most 
alleles, folding and surface expression of the 
class I heavy chain is dependent on the 
presence of its associated P2-microglobulin 
(p2M) light chain. Experiments in a mu- 
tant cell line in which class I surface ex- 
pression was rescued by extracellular addi- 
tion of peptide were initially interpreted to 
suggest that the peptide is required for 
proper folding and assembly of class I poly- 
peptide chains; the peptide was hypothe- 
sized to act as a scaffold, without which the 
native class I structure could not form (2). 
However. emntv class I molecules are as- , . ,  
sembled and expressed in mutant and non- 
mutant cell lines in the absence of added 
peptides (3,4) and are readily detectable on 
the cell surface if cells are grown at 26°C 
(4). At 37"C, empty class I molecules also 
reach the cell surface but rapidly become 
undetectable by conformationally sensitive 
antibodies unless stabilized by the binding 
of an exogenously added peptide or by the 
addition of excess P2M (4, 5). Although 
empty class I molecules are reported to be 
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unstable at physiological temperatures (4, 
5), the thermodynamic stability of a puri- 
fied empty class I molecule has not been 
directly compared with the same molecule 
in its peptide-filled form. Here, we compare 
the thermal denaturation ~rofiles of the 
murine H-2Kd molecule, assembled in vitro 
from separated heavy and light chains in 
the presence and absence of a synthetic 
peptide, to Kd occupied with an endoge- 
nous mixture of peptides. From these data, 
we calculated the free energy contributed 
by the peptide to the stabilization of the Kd 
heterodimer and evaluated the portion of 
empty molecules that were folded at physi- 
ological temperatures. The stability assay 
used is a method for evaluating peptide 
binding to purified MHC molecules and can 
be used to compare the degree of stabiliza- 
tion conferred by peptides of different com- 
positions and sizes. 

A secreted form of Kd was efficiently 
expressed in Chinese hamster ovary (CHO) 
cells with a glutamine synthetase-based 
amplifiable expression system (6). A stop 
codon was inserted into the cDNA encod- 
ing the heavy chain of Kd after amino acid 
284 by use of the polymerase chain reaction 
(7). The resulting modified cDNA was 
subcloned into an expression vector (8) 
that carried the glutamine synthetase gene 
as a selectable marker and as a means of 
gene amplification in the presence of the 
drug methionine sulfoximine (MSX) (6). 
The cDNAs encoding human or murine 
P2M were subcloned into a similar expres- 

with antibodies against both heavy and 
light chains (9); the results were verified by 
immunoprecipitation with a Kd-specific 
monoclonal antibody (MAb) (9). The lines 
expressing the most Kd were those that had 
been transfected with the Kd and human 
P2M combination (10 to 25 mgAiter), with 
undetectable amounts of heavy chain se- 
creted in the absence of transfected p2M 
cDNA and intermediate amounts detected 
in cells transfected with the Kd and murine 
P2M combination (1 to 2 mgfliter). The 
increased recovery of the hybrid class I 
heterodimer over the completely murine 
heterodimer may reflect the greater stability 
reported for murine class I heavy chains 
that are complexed with human rather than 
with murine P2M (1 0). 

The highest expressing clone (Kd heavy 
chain and human p2M combination) was 
introduced into a hollow fiber bioreactor 
device (1 1) in the presence of 100 p,M 
MSX. Supernatants containing Kd were 
harvested daily and contained heterodimer 
up to 100 p,g/ml, as quantitated by ELISA 
(9). Heterodimer was isolated from culture 
supernatants by immunoaffinity chromatog- 
raphy (1 2). Analysis by SDS-polyacrylam- 
ide gel electrophoresis (PAGE) of purified 
Kd showed several species migrating be- 
tween 44 and 45 kD, corresponding to 
truncated heavy chain, and a sharp band at 
12 kD, corresponding to P2M. Digestion of 
purified Kd with peptide-N-glycosidase F 
(PNGase F) had no effect on the lower 
band but converted the upper band to a 
single sharp band migrating at 32 kD, the 
expected size of the 284-amino acid, trun- 
cated heavy chain, which indicates that the 
observed heterogeneity results from exten- 
sive N-linked glycosylation (Fig. 1). The 
complex eluted from a gel filtration column 
as a single species of 60 to 63 kD (13). 
NH2-terminal sequencing of purified Kd 
yielded sequences in equimolar amounts 
that correspond to the first 20 residues of 
the Kd heavy chain and human P2M (13). 
Hamster p2M (14) and bovine P2M se- 
quences (15) were undetectable, which sug- 
gests that association with endogenous 
hamster p2M and exchange with bovine 
P2M in the medium (16) were minimal. 
Peptides associated with the hybrid het- 
erodimer were isolated by acid elution (1 7) 
and sequenced. Tyrosine and proline pre- 
dominated in the second and fourth posi- 
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