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Predator-Induced Phenotypical Change in Body 
Morphology in Crucian Carp 

Christer Bronmark* and Jeffrey G. Miner 
In a field experiment where the presence or absence of piscivorous pike (Esox lucius) in 
ponds was manipulated, the morphology of crucian carp (Carassius carassius) diverged, 
such that individuals became deeper bodied in pond sections with pike. A laboratory 
experiment confirmed that the presence of this predator induced a change in body mor
phology in the carp. Estimation of prey vulnerability to predation by pike, a gape-limited 
predator, revealed that this increase in body depth resulted in crucian carp reaching a size 
that provided refuge from predation. However, this change in morphology incurs a cost 
through an increase in drag when the carp are swimming. Because crucian carp are limited 
by resources in the absence of piscivores and by the substantial cost of the defensive 
morph in their presence, phenotypic plasticity should be the optimal strategy for this 
species. 

Various morphological structures in prey 
organisms function as efficient adaptations 
against predation (1), and these morpho
logical defenses could be either constitutive 
or environmentally induced. The evolution 
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and maintenance of inducible defenses is 
favored when the defense incurs a fitness 
cost, when predation intensity varies tem
porally or spatially, and when prey have 
reliable cues for predator detection (2, 3). 
Predator-induced morphological defenses 
occur in a number of invertebrates, mainly 
aquatic taxa (2). Waterborne cues from 
predators or chemicals released by injured 

conspecifics trigger the development of de
fenses that reduce predation rates (2, 4). 
However, induced defenses have been 
shown to incur a fitness cost through a 
reduction of growth or reproduction or both 
(2, 4, 5). Here, we report on a predator-
induced change in body morphology in a 
vertebrate, the freshwater fish crucian carp 
(Carassius carassius) . 

Crucian carp are extremely vulnerable 
to predation (6, 7). In lakes with pisci
vores, especially pike Esox lucius, crucian 
carp populations consist of a small number 
of large individuals (6) . However, without 
piscivores, crucian carp form dense popu
lations of small individuals (6-8). The 
body morphologies of monospecific pond 
populations and multispecies lake popula
tions differ, with lake individuals much 
deeper bodied. The two morphs originally 
were considered as separate species (Cypri-
nus vulgaris and C. gibelio); however, in 
the early 1800s it was shown by transplant 
experiments that these two species were 
one (9) . The presence of two morphs has 
previously been considered a result of dif
ferences in resource levels; however, we 
show that increased body depth can also 
be an inducible morphological defense 
that reduces the risk of predation. 

For part of a study evaluating the effects 
of trophic structure on freshwater commu
nities, we divided into halves two small, 
eutrophic ponds (Severin's and Mats' 
ponds, 0.1 ha each) with monospecific 
crucian carp populations and introduced 
pike into one half (10). After 12 weeks, 
crucian carp had diverged in body shape; in 
pond sections with pike, carp tended to 
have a deeper body (Fig. 1). Given this 
result, we hypothesized that the change in 
body morphology could be a result of sev
eral things: (i) selective predation, (ii) an 
increase in resource availability, or (iii) a 
predator-induced phenotypic modification 
of body shape. The small variance in body 
depth and the absence of overlap between 
treatments (Fig. 1) suggested no polymor
phism with regard to this trait in the orig
inal population; thus, selective predation 
on genetically determined morphs could 
not account for the increase in body depth. 

High resource availability may be re
sponsible for the shift in morphology, as 
suggested by a study in Finland where 
crucian carp increased in body depth when 
introduced at a low density of 187 fish per 
hectare to a fishless pond (8). In our 
ponds, the reduction of the crucian carp 
density by pike permitted an increase in 
the density of large, cladoceran zooplank-
ton (11). This increase in food availability 
in the pike section could account for the 
differences in the carp body depth. How
ever, in another experiment we trans
planted crucian carp from a pond with a 
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high-density, stunted population (John's 
Pond) to a fishless pond (Revinge Pond). 
Because the fishless pond had a much 
larger biomass of zooplankton and benthic 
invertebrates as compared to ponds with 
crucian carp (I I), crucian carp grew faster 
there (0.319 g per day as compared to 
0.096 and 0.097 g per day in the control 
sections of Severin's and Mats' ponds, 
res~ectivelv) . Greater resource availabilitv , , 

in Revinge Pond did not, however, in- 
crease body depth (the body depth-length 
ratio in Revinge Pond was 0.301 + 0.011, 
mean + SD; in Severin's Pond (pike 
section), the ratio was 0.370 + 0.015; and 
in Mats' Pond, it was 0.388 k 0.013). 

To investigate the mechanisms behind 
the shift in body morphology, we performed 
a laboratory experiment where we quanti- 
fied body morphology of crucian carp as a 
function of food level (low or high) or 
presence of pike (1 2). High-food carp be- 
came marginally deeper bodied than low- 
food carp (Fig. 2). However, the presence 
of pike caused a large increase in body 
depth of crucian carp as compared to low- 
or high-food treatments without pike (Fig. 
2). Thus, the presence of pike induced a 
phenotypical change in resource allocation, 
giving priority to growth in body depth. 

Increasing body depth should benefit 
crucian carp by reducing predation. Pisci- 
vores, such as pike, are gape-limited pred- 
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Fig. 1. The relation between total body length 
(L) and body depth (D) of crucian carp in the 
presence and absence of pike in two ponds in 
southern Sweden. Severin's control: D = 
-2.728 + 0.328L, SE = 0.007; Severin's pike: 
D = 4.765 + 0.344L, SE = 0.014; Mats' control: 
D = 0.391 + 0.315L, SE = 0.012; and Mat's 
pike: D = 6.880 + 0.374L, SE = 0.066. Regres- 
sions were significantly different between treat- 
ments in both ponds (analysis of covariance, P 
< 0.001), but slopes did not differ (P z 0.05) in 
either pond. 

Fig. 2. The body depth-length ratio of crucian 
carp grown at low- and high-food levels and in 
the presence of pike. Treatments differed sig- 
nificantly (analysis of variance, P < 0.001). 
Horizontal bars indicate differences between 
treatments (Tukey's test; single asterisk, P = 
0.05; triple asterisk, P < 0.001). 

ators (1 3) ; the body depth of prey relative 
to the mouth width of the ~ i k e  constrains 
maximum prey size. Piscivores tend to feed 
on prey that are smaller than the maxi- 
mum size possible (14, 15), but, as shown 
in laboratory experiments, prey that .have 
not yet reached an absolute size refuge may 
still benefit from an increase in body depth 
because of longer piscivore handling times 
(15, 16) and a redirection of the strike 
caudally (1 7), which increases the proba- 
bility of escape. Calculations of the rela- 
tive vulnerabilities (1 8) for crucian carp of 
different body depths indicate that in sec- 
tions of the ponds without pike, almost all 
crucian carp were vulnerable to predation 
(Fig. 3), whereas in sections with pike the 
increasing body depth provided an abso- 
lute size refuge for the remaining carp, 
with the exception of juveniles hatched 
during summer. 

The plasticity of the morphological de- 
fense trait suggests that this trait incurs a 
fitness cost to the prey that could be 
avoided when predators are absent (2, 3). 
Minimizing costs should be especially im- 
portant in situations where intraspecific 
competition is intense, such as in the 
dense crucian carp populations in systems 
without pike. A change in body morphol- 
ogy affects swimming performance. The 
theoretical total drag (19) for the body of 
a 140-mm crucian carp swimming at a 
speed of 10 cm/s is 32% greater for a 
deep-bodied carp from the pike section 
than for a shallow-bodied, fusiform carp 
from the control section. Thus, assuming 
that carp use the same foraging (swim- 
ming) mode in both sections, the cost of 
swimming increases markedly with the 
presence of pike. Gut content analysis of 
crucian carp indicated no difference in 

Low food High food Low food 
+ 

-*I pike 

diet between pike and pikeless sections (I I), 
which suggests that carp use the same forag- 
ing mode in both sections. Once a prey has 
reached the absolute size refuge, we expect a 
loss of the induced, costly morphology ( 3 ,  
which for crucian carp means redirecting 
energy allocation toward growing longer. To 
date, no change in the body depth-length 
ratios of larger fish has occurred in our 
ponds. However, in three Finnish ponds 
with piscivores (6), the body depth-length 
ratio declined with increasing length for fish 
longer than 150 mrn in total length (20). 

When the cost of a defense is high, 
selection should favor the evolution of in- 
ducible defenses when the prey have reli- 
able cues for detecting the predator and the 
predation pressure is variable (2, 3). Our 
experimental design could not discern the 
precise cue that triggered the body mor- 
phology modifications in crucian carp, but 
cyprinids do respond behaviorally to alarm 
substances released by conspecifics when 
attacked by piscivores (21). In habitats 
where severe winter conditions with anoxia 
eliminate other species, especially pisci- 
vores, crucian carp can survive by using 
alternative metabolic pathways (22). Sto- 
chastic environmental disturbances coupled 

Fig. 3. Relative vulnerability to Severin's Pond Mats' pond . . 

pike predation (dashed lines) and 1.0 ---. ---- 1 .O 
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with recolonization by piscivores could thus 
create the variability in predation pressure 
needed to promote the evolution of an 
inducible defense in crucian carp. 
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Activation of a Plant Gene by T-DNA Tagging: 
Auxin-independent Growth in Vitro 

Hiroaki Hayashi, lnge Czaja, Helge Lubenow, Jeff Schell, 
Richard Walden* 

A transferred DNA (T-DNA) tagging vector with the potential to produce dominant muta- 
tions was used with cocultured Agrobacterium tumefaciens and protoplasts to tag genes 
involved in the action of the plant growth substance auxin. Transgenic calli were selected 
for their ability to grow in the absence of auxin in the culture media. From one experiment, 
12 calli that displayed this phenotype were recovered, of which 1 1 were able to regenerate 
into plants.-In one plant studied in detail, protoplast division in the absence of auxin 
genetically cosegregated with a single T-DNA insert. A messenger RNA encoded by a 
6.4-kilobase sequence of plant genomic DNA rescued from the mutant is overexpressed 
relative to untransformed plants. The genomic DNA, as well as a cognate complementary 
DNA, once transfected into protoplasts promote growth and cell division in vitro in the 
absence of exogenously added auxin. 

I n  plants, auxins and cytokinins are re- 
quired to induce cell division ( I )  and affect 
plant growth and development ( 2 ) ,  al- 
though little is known of the molecular 
basis by which normal plant cells synthe- 
size, perceive, or respond to plant growth 
substances (3). Several plant pathogens are 
able to induce growth and division of in- 
fected plant cells as a result of the synthesis 
of growth substances (4), and in the case of 
the tumor-inducing soil bacteria Agrobacte- 
ria tumefaciens, neoplastic growth results 
from the integration of a defined sequence 

of bacterial DNA, the T-DNA, into the 
genome of the infected plant cell (5). 
T-DNA encodes proteins that interfere 
with the normal biosynthetic pathways of 
plant grbwth substances (6) ;  T-DNA is 
used as a transformation vector ,(7) and 
gene tag (8). We describe here a tagging 
vector derived from T-DNA that produces 
dominant mutations and thus allows selec- 
tion for specific mutations from the popu- 
lation of primary transformants. 

The T-DNA tagging vector pPCVICE- 
n4HPT (Fig. 1A) contains multiple tran- 
scriptional enhancers derived from the cau- 
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