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An analysis of atwo-dimensional tidal model of the Wadden Sea reveals Lagrangian chaos 
in the trajectories of water parcels. The associated chaotic stirring results from the trans- 
verse intersection of the stable and unstable curves of hyperbolic fixed points in the 
Lagrangian residual displacement field (the tidal Poincare map). This tidal dispersion 
mechanism produces rapid water exchange along the channel axis and could be repre- 
sentative of many shallow tidal seas. 

Mixing or dispersion in tidal basins is an 
extremely complicated process (1, 2). It 
affects all biotic and abiotic substances dis- 
solved or suspended in the water. In partic- 
ular, it determines to a large extent the 
time scales of homogenization inside the 
basin and of the flushing of the adjacent 
continental shelf with external water mass- 
es. The traditional view is to regard the 
effective horizontal dispersion as an inter- 
action of turbulence generated by the tidal 
currents at the sea bed and the horizontal or 
vertical shear of these currents. The turbu- 
lence proper introduces a random walk of 
the water parcels, amplified by its interac- 
tion with the shear. In this way, horizontal 
dispersion coefficients up to 100 m2 s-' can 
be reached if the shear is uniform over 
distances of the tidal excursion amplitude 
(on the order of 10 km) and the turbulent 
mixing time scale over the shear width is 
much smaller than the tidal period (2, 3). 
In many tidal areas, however, the horizon- 
tal shear pattern is extremely irregular over 
length scales less than the tidal excursion. 
On the other hand, these length scales are 
large enough to have horizontal, turbulent 
mixing time scales in excess of the tidal 
period. Thus, there is sufficient reason to 
doubt whether turbulent shear dispersion is 
the principal mixing process in shallow 
tidal embayments (2). 

There are, however, other possible ways 
to produce dispersion (that is, randomiza- 
tion of particle trajectories) in tidal flows 
with irregular horizontal structures. Zim- 
merman (4) proposed that the necessary 
randomization could be achieved without 
the recourse of small-scale turbulence if one 
regards the tidal velocity field as an oscilla- 
tory current superimposed on a pattern of 
(time-independent) residual currents that 
are a random function of position only. 
These residuals are generated by the tide 
itself in interaction with the irregular bot- 
tom topography and are often organized in 
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eddy-like structures (5) .  The superposition 
then leads to a "tidal random waik" i 4 ) ,  the 
properties of which can be used to quantify 
a dispersion coefficient that is controlled by 
two dimensionless parameters: (i) A, the 
ratio of the tidal excursion to the residual 
eddy diameter, and (ii) v, the ratio of the 
residual velocity to the tidal velocity. Dis- 
persion is optimal for A values of order unity 
I0 (1)l (2)- 

Recently, however, it has become evi- 
dent that randomness of the (Eulerian) 
velocity field is not necessary to have (La- 
grangian) trajectories of water parcels that 
are random functions of time. The phe- 
nomenon has been observed in a host of 
laboratory and numerical experiments in 
various fluids (6, 7) and plasmas (8), par- 
ticularly in two-dimensional (2-D) time- 
periodic flows. The clue to this behavior is 
that for a given 2-D time-periodic velocity 
field, the equations for the (Lagrangian) 
particle velocities are analogous to the 
Hamiltonian equations of motion of a dy- 
namical system with one and a half degrees 
of freedom. with the stream function of the 
prescribed field acting as the Hamiltonian. 
Under certain conditions the motion in the 
phase space, spanned by the canonical co- 
ordinates of the Hamiltonian (which are 
the physical coordinates in a 2-D fluid), can 

be chaotic (6, 9). Thus, in time-periodic 
2-D fluids, the trajectories can also be 
chaotic. This Lagrangian chaos is volume 
(or area) conserving and therefore only a 
complicated stirring process (1 0) (chaotic 
stirring). However, the fluid may have mix- 
ing properties in a coarse-grained sense (I I) 
even though the Eulerian velocity field is 
com~letelv nonturbulent and deterministic. 
Moreover, the generic type of flow in these 
systems is such that not all trajectories are 
chaotic but that the phase space is covered 
with coherent areas (islands), from which 
particles cannot escape (1 2). Together, 

Flg. 2. (A) The distortion of an initially rectan- 
gular array of particles during the first tidal 
cycle (blue), after 0.25 period (orange), 0.5 
period (red), 0.75 period (green), and 1 period 
(violet). The tidal excursion of a single particle 
is shown by the dotted black line. The 5-m 
isobath marks the direction of the tidal channel. 
Each grid unit is 500 m. (B) As (A) but now after 
1 (blue), 2 (green), 3 (red), 4 (orange), and 5 
(violet) tidal cycles. 

Flg. 1. The western Dutch 
Wadden Sea. The part en- 
closed by the dashed-dot- 
ted line and the coastline 
marks the boundary of the 
numerical model (34) that 
was used to simulate the 
vertically averaged tidal 
currents in the area. The 
model reproduces the spa- 
tial structure of the velocity 
field of the principal semi- 
diurnal lunar tide, M,, and 
all its harmonics (M ,,,,, , ), 
and of the rectified res~dual 
component. Mo. The M2,,,6 
components are prescribed at the open boundary of the model and propagate into the area. The 
harmonics and the residual are also generated internally by nonlinear processes. The residual 
circulation cells are shown by their streamlines. They agree well with obse~ations from current 
meter measurements (4). Tidal flats are shaded. The dashed rectangle in the center is the principal 
area of investigation. 
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these islands could be identical to the 
patchiness that is sometimes observed in 
drifter experiments (13) and in the distri- 
bution of various substances in the sea. 
Chaotic stirring in time-periodic flows can 
therefore be an effective horizontal disper- 
sion process in tidal areas (2, 14, 15). 
Indeed it has appeared that the control 
parameters, A and u, of the tidal random- 
walk model (4) are precisely the same as 
those determining the appearance of La- 
grangian chaos in numerical experiments 
(16). There are also indications that the 
effective dispersion by chaotic stirring ex- 
hibits a resonance (8, 17) for A = 0 (1). 

Guided bv these observations. we looked 
for the appearance of Lagrangian chaos in a 
realistic, 2-D numerical model of one of the 
best investigated areas with strong tidal 
mixing, the Dutch Wadden Sea. We first 
show some of the indications of chaos in 
the particle trajectories of the model. Then 
we discuss the characteristics of Lagrangian 
chaos in a simple dynamical system repre- 
sentative of the flow in a complicated tidal 
basin, the properties of which resemble 
those of chaos in periodically perturbed 
traveling waves (1 8). Finally, we revisit the 
model of the Wadden Sea to demonstrate 
unequivocally the existence of chaotic stir- 
ring and its importance as a mixing process. 

Particle Spreading in a Model of 
the Wadden Sea 

The Wadden Sea is a tidal area of extreme 
geomorphological complexity, located be- 
hind a chain of islands off the Dutch, 
German. and Danish coasts (19). Each 

\ ,  

separate basin is connected to the North 
Sea bv a tidal inlet 5 to 10 km wide and 
more ihan 10 m deep. Inside the basin the 
inlet branches into several channels that 
drain a topographically complicated area of 
tidal flats. The tide cooscillates with that of 
the North Sea and is principally semidiur- 
nal, with the lunar semidiurnal tide, M2, as 
the dominant comuonent. Vertical tidal 
ranges vary between 1.5 and 3 m, depend- 
ing on the amplitude in the adjacent North 
Sea and the state of resonance of the basin 
concerned. In the middle of the deeper 
channels, vigorous tidal currents easily 
reach speeds of 1.5 m s-'. The irregular 
bottom topography induces large spatial 
irregularities in the current velocity field, 
which is ~eriodic in time evenwhere (20) . , 

but a cokplicated function of position. 
Differential bottom friction and its associ- 
ated vorticity dynamics (2 1) primarily cause 
this irregularity and the associated strong 
straining in the velocity field. Nonlinear 
vorticity advection is responsible for a "rec- 
tified" or "residual" current Dattern that 
persists after the tidal current velocity has 
been averaged at each position over the 

tidal period. Analyses of current velocity 
measurements (4, 22) and numerical simu- 
lations (2 1) show the existence of residual 
eddies all over the area with current speeds 
UD to 0.2 m s-'. 

To demonstrate the general features of 
particle spreading, we focus here on the 
central part of the western Dutch Wadden 
Sea (Fig. 1). First we show (Fig. 2) the 
deformation of an initially rectangular array 
(2.5 by 2.5 km) of particles in the central 
part of the area near one of the big residual 
eddies. The number of particles is 500 per 
erid unit of 500 m. We followed the fate of " 

the rectangle first through a complete tidal 
cycle (Fig. 2A) and then, respectively, after 
two, three, four, and five tidal cycles. We 
also show (Fig. 2A) the trajectory of a 
single particle over a full tidal cycle to give 
an estimate of the tidal excursion ampli- 
tude, which was about 10 km here. A 
parcel traverses an area of the same extent 
as the residual eddv and therefore sam~les a 
spatially complicated part of the Eulerian 
velocity field. The results in Fig. 2A show 
that different particles sampled different 
parts of the velocity field and that this 
process created a strong and nonuniform 
stretching and folding of the initially rec- 
tangular array. In a single tidal cycle the 
rectangle was completely distorted and its 
perimeter grew considerably. This process 
was repeated during each tidal cycle there- 
after (Fig. 2B). Already after two cycles 
have passed it is hard to reconstruct the 
perimeter, which has an irregular structure 
and extends far outside the area covered bv 
the initial tidal excursion. Thus we see a 
real transDort of material out of the bounds 
set by the tidal velocity field proper. More- 
over, on closer inspection the length 
growth of the perimeter appears highly ir- 
regular. This behavior results only from the 
presence of a spatially complex, yet strictly 
time-periodic and deterministic, tidal ve- 
locity field. There were no turbulent veloc- 
ities present and therefore there was no 
turbulent (shear) diffusion in the proper 
sense. Thus the volume enclosed by the 
stretched and folded perimeter was con- 
served. All of these properties-sensitivity 
of the trajectory to the initial position, 
folding and stretching of material areas, 
strong but irregular growth of the patch 
perimeter-indicate the presence of La- 
grangian chaos and its importance as a 
transport process. 

Particle Spreading in a 
Simple Model 

The complicated tidal and residual velocity 
field in the Wadden Sea can be thought of 
as the superposition of many spatially peri- 
odic modes with different horizontal wave 
numbers produced by the interaction of 

bottom topography and the tides. Each 
wave number in the topography creates a 
component in the velocity field, the ampli- 
tude of which is a function of A and the 
amplitude of the topographic component 
(5). For residual currents the response is 
largest if A = 0 (1). Pasmanter (14) realized 
that, no matter how complicated the spatial 
structure of the superposition of all modes 
may be, even the presence of a single mode 
could give rise to chaos in the particle 
trajectories. We elaborated his model to 
illuminate the basic mechanisms of particle 
spreading. 

Suppose that the (quasi-2-D) residual 
and tidal topographic velocity fields are 
derived from a 2-D, spatially periodic 
stream function S (x, y) with the same wave- 
length in both directions, the strength of 
which is a strictly periodic function of time 
T(t). This function forms a lattice of eddies 
upon which is superposed a spatially uni- 
form, rectilinear tidal current of the same 
time periodicity. For given initial condi- 
tions (xo;yo) the particle trajectories [x(t), 
y(t)] are then given by the solution of the 
system (23): 

where 

and 1 
S(x,y) = ; sin(.rrx) sin(m-y) (4) 

Evidently this model represents a nondiver- 
gent velocity field. Thus any initial area is 
conserved under evolution described in 
Eqs. 1 and 2. The parameters A and u 
determine the quality of the solution, par- 
ticularly the occurrence of chaos. For the 
sinusoidal functions T(t) and S (x, y) given 
in Eqs. 3 and 4, the trajectories can be 
found by numerical integration. However, 
to minimize numerical errors we adopted 
Pasmanter's (1 4) approach and replaced 
T(t) with an alternating step function of 
unit period and S(x,y) with a sawtooth 
function of double-unit wavelength in both 
coordinates. For each period of the oscilla- 
tion, the solution can then be obtained by 
piece-wise analytical integration, and the 
coupled differential equations reduce to a 
mapping (24) 

where n is the iteration number, or the 
number of (tidal) periods. 

After iteration over ten ~eriods of 200 
particles initially distributed evenly over an 
eddy cell (x = 0,l ;  y = 0, I) ,  maxima in the 
particle variance in the x direction appear 
with approximately the same magnitude for 
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Fig. 3. (A) The x-variance, a2,, relative to the 
squared tidal excursion amplitude of 100 parti- 
cles that were init~ally evenly distributed over a 
circulation cell, after 10 periods. Variance is 
given as a funct~on of the ratio of the tidal 
excursion amplitude to the eddy diameter (A) 
for different values of the ratio of eddy veloc~ty 
to the tidal veloc~ty (v). For v = 0.3 and A values 
(B) 1.5, (C) 2.0, (D) 2.5, and (E) 3.0, the 
distortion of a vertical line through the eddy cell 
1s shown for (B) to (E) by a Poincare section. On 
the right for each A ,  (top) the x-variance of the 
particle displacement as a function of iteration 
number and (bottom) the length growth of the 
l~ne element ( e ) ,  both linear (lower curve, large 
dots) and log-log (upper curve, small dots); 
time, t ,  in interaction number. 

A = 2,4, 6 and minima for A = l , 3 , 5  (Fig. 
3A). There is a general increase of the 
spreading with u. To interpret this behav- 
ior, we show in Fig. 3, B to E, for four 
values of A a sequence of Poincark sections 
by plotting 25 successive positions of 2000 
particles. Initially, the particles were sepa- 
rated by equal distance on a line through 
the center of a circulation cell. The se- 
quence has the following properties: 

1) For A = 1.5 (or smaller), all particles 

Fig. 4. Construction of the unstable (A) and 
stable (B) curves of, respectively, the hyperbol- 
ic fixed points at (x = 0.5, y = 0.8) and (x = 2.5, 
y = 0.8) for parameter values A = 3 and v = 
0.2. In (C) we show a magnification of the 
cadred area in (A) and (B). Successive equal 
areas of the iteration are shown dotted and 
black. 

remain t r a ~ ~ e d  in the circulation cell and . . 
rotate around elliptic points forming a 
"whorl" (25). After some time the growth 
of the x-variance stops and, more impor- 
tant, the growth of the initial line is exactly 
linear in time. The regime is not chaotic, 
and all particles tend to follow approxi- 
mately the streamlines of the topographic 
circulation cell. 

2) However. as soon as A is raised above 
1.5, particles appear to escape from the cell 
in both the negative and positive x direc- 
tions and other particles remain trapped in 
islands. The size of these islands decreases 
with A until. at A = 2. all islands have 
disappeared and all particles travel in bands 
of alternating direction, so-called "advec- 
tive channels." The variance in the x di- 
rection is now proportional to t2, but the 
growth of a line element is still linear in 
time. Nonlinearity here creates a kind of 
Lagrangian shear flow but no chaos. The 
fixed points that separate the advective 
channels of different direction are ~arabol- 
ic. They are at the center line of the cells 
but not at the elliptic points of the cells 
proper. 

3) When A is now increased further 
(Fig. 3, D and E), islands of trapped 
particles, as well as the associated elliptic 
points, reappear, but hyperbolic points 
arise at y = 0.8. These mark the onset of 
chaos in the particle trajectories that is 
particularly clear in the line stretching 
that is now exponential rather than linear. 
The variance grows as tl . '  (Fig. 3D) and 
t1.5 (Fig. 3E), which indicates anomalous 
diffusion (1 4, 18, 26). This diffusion prob- 

ably results from a mixture of trapped 
particles (u2 - constant), particles still 
traveling in advective channels ( a 2  - t2) 
and particles wandering chaotically over 
the area in a kind of random walk (u2 - 
t ) .  The decrease of the number of particles 
traveling in the advective channels and 
the increase in the size of the islands if A is 
raised from 2.5 to 3 are then reflected in 
the diminishing of the exponent from 1.7 
to 1.5. Inside the trapping regions, chaot- 
ic areas may also exist. In this case a 
homogenization in these areas occurs, but 
the particles cannot escape the region 
inside the outermost closed invariant 
curve surrounding an island. 

This sequence repeats itself for larger 
values of A, as shown by the particle vari- 
ance as a function of A (Fig. 3A). 

A definite conclusion about the appear- 
ance of chaotic trajectories can be obtained 
by a more detailed analysis of the hyperbol- 
ic fixed points in the Poincare sections. To 
each hyperbolic point two stable and two 
unstable invariant curves are connected 
along which a particle proceeds to or re- 
cedes from the point exponentially slowly. 
If the stable and unstable curves of different 
hyperbolic points intersect, chaos sets in 
(6, 9). A general property of area-conserv- 
ing maps is that the distance between suc- 
cessive intersection points becomes ever 
smaller and the unstable curve exhibits 
loops of ever-increasing length that trans- 
versely intersect the stable curve. The 
strong stretching and folding of this "ten- 
dril" (25) create chaotic stirring. This be- 
havior also occurred in our results (Fig. 4). 
The extreme increase in stretching is im- 
mediately evident. Material is smeared out 
over large distances when the hyperbolic 
point is approached because the area be- 
tween both curves is conserved. In the 
context of tidal mixing this behavior means 
that water exchange is strongly promoted 
near the hyperbolic points of a "tidal Poin- 
car6 map" once the governing parameters A 
and u have exceeded the critical values for 
the onset of chaos. The observational (4, 
22) and numerical (2 1) evidence we have 
for the western Dutch Wadden Sea gives a 
range of A for the residual eddies between 2 
and 4 and of w between 0.05 and 0.3. For 
the residual eddy in the central area of Fig. 
1, the parameter values are A = 3.0 and u = 
0.2. Judging by the results of the simple 
model (1, 2), we must therefore expect 
signs of chaotic stirring in that area. 

Revisiting the Wadden Sea Model 

Because hyperbolic fixed points and the 
eventual transverse intersection of unstable 
and stable curves are the crucial properties 
of chaotic stirring, we now return to the 
numerical model of the Wadden Sea to 
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determine whether we can locate these points 
and curves in the tidal Poincar6 section of a 
part of the area. The Lagrangian residual 
velocity field (27) of a large number of grid 
points in the central part of the Wadden Sea 
(Fig. 5A) was obtained by calculation of the 
net displacement of each point over a tidal 
cycle, with all points starting at the same 
initial phase of the tide. In a sense, the field is 
a Poincak section because each vector gives 
distance and direction over which the particle 
is displaced after one tidal period. We located 
three elliptic and two hyperbolic points in this 
region. Next we constructed the stable and 
unstable curves of two of the hyperbolic points 
that appear to intersect transversely (Fig. 
5A). The result of this intersection is that 
fluid is strongly stretched parallel to the chan- 
nel direction and compressed in the cross- 
channel direction to produce an appreciable 
longitudinal water exchange in the area. 

These results are further illustrated (Fig. 
5B) by examination of the effect of a hy- 
perbolic and elliptic point on a line element 

Fig. 5. (A) Lagrangian residual velocity field in 
the central part of the Wadden Sea calculated 
by numerical integration of a particle trajectory 
with the use of the Eulerian velocity field of our 
tidal model. A vector the size of one grid unit is 
equivalent to a residual velocity of 0.1 m s-' or 
to a residual displacement in the vector direc- 
tion of 4.5 km (nine grid units). Hyperbolic 
(crosses) and elliptic (filled circles) fixed points 
are shown together with the stable (blue) and 
unstable (red) invariant curves of, respectively, 
the northern and eastern hyperbolic points. (B) 
Line stretching and folding of an initially straight 
line segment of lo4 particles (black) near the 
central elliptic point after 1 (red), 2 (blue), and 3 
(green) tidal periods. (C) Magnification of the 
dashed rectangle in (B) showing the self-similar 
structure of folding and stretching. 

that is initially located near the elliptic 
point. The line consists of lo4 points. As 
soon as the initially upper segment ap- 
proaches the western hyperbolic point, it 
undergoes a strong stretching and folding in 
the channel direction. This is a self-similar 
process (Fig. 5C) that also occurs on small- 
er scales. This indicates fractal structure in 
the line stretching, another property of 
chaotic stirring (28). On the other hand, 
most particles of the initially lower part of 
the line rotate around the elliptic point and 
seem to be trapped there. The behavior of 
the line stretching appears to be exponen- 
tial with a Lyapunov exponent of order 1 
(tidal period) -I, but the stretching is irreg- 
ular, probably because of the inhomogene- 
ity of the flow. 

After three tidal periods the density distri- 
bution of the points forming the initial line 
segment is such that there are multiple max- 
ima and the spreading is predominantly along 
the channel axis (Fig. 6A). The first property 
is a clear indication that, although chaotic, 
the spreading certainly does not give rise to a 
Gaussian distribution and therefore it cannot 
be described by a simple random walk model. 
Although the assignment of a diffusion coef- 
ficient to this process is therefore dubious, the 
variance of the particle distribution after three 
tidal periods is equivalent to a longitudinal 
diffusion coefficient of the order 100 mZ s-I, 
which is in the range of values observed in dye 
experiments in similar tidal areas (29). How- 
ever, if we simulate the dispersion process in a 
random walk model with Fickian diffusion 
coefficients that give an overall spreading with 
a variance similar to the chaotic stirring mod- 
el, then the multiple maxima disappear and 
the density distribution is much more homo- 
geneous and approximately Gaussian (Fig. 
6B). Nonetheless, because turbulent diffusion 
in all tidal areas always competes with other 
dispersion processes, one may well ask what 
its influence is on the "coarse-grained" distri- 
bution of Fie. 6A. Therefore. we have added - 
to the chaotic stirring experiment a small- 
scale random walk equivalent to an isotropic, 
turbulent diffusion coefficient D = 0.02uH 
(where u is the tidal velocity amplitude and H 
is the local water depth), representative of 
genuine horizontal turbulence in a tidal cur- 
rent (2, 30). It primarily gives a larger cross- 
channel dispersion (Fig. 6C), but the overall 
inhomogeneous distribution remains unaffect- 
ed. However, in the long run turbulent diffu- 
sion destroys the lamellar structure of chaotic 
stirring. Probably this picture comes nearest to 
reality. 

Conclusion 

Although the Eulerian velocity field in the 
Wadden Sea is much more complicated 
than most of the laboratory or numerical 
models studied before, particle spreading 

appears to be qualitatively similar to chaot- 
ic stirring in simple deterministic time- 
periodic velocity fields of two dimensions. 
The stirring process is governed by the 
location of hyperbolic and elliptic fixed 
points in the tidal Poincar6 map, but, 
because of the complex morphology, the 
distribution of these points over the area is 
irregular. In our simulations the dimensions 
of islands surrounding elliptic points appear 
to be much smaller than the chaotic re- 
gions, and advective channels could not be 
detected. Thus the large spreading of parti- 
cles in the Wadden Sea can be attributed 
largely to the presence of hyperbolic fixed 
points and the transverse intersection of 
their associated invariant stable and unsta- 
ble curves. The latter is the primary mech- 
anism of water exchange that may probably 
be quantified by more careful analysis of the 
dynamics of the lobes (3 1). At large hori- 
zontal length scales, the process is not 
much affected by smaller scale turbulent 

Fig. 6. (A) Particle distribution in numbers per 
grid unit of the line segment of Fig. 5, B to C, 
after 3 tidal periods when only the deterministic 
tidal velocity field is present. (8) As (A) without 
the tidal velocity field but with a random walk 
equivalent to diffusion in the along- and cross- 
channel directions. The coefficients are of the 
order 100 ua,, m2 s-l, where ua is the tidal 
velocity amplitude along the channel axis and u, 
is the amplitude in the cross direction. (C) As (A) 
with a random walk superposed on the tidal 
velocity field equivalent to an isotropic, small- 
scale turbulent diffusion coefficient of the order 
0.02uH m2 s-l. 
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diffusion, although this process smooths the 
striations caused by chaotic stirring (32), 
which gives a more realistic distribution 
pattern on smaller length scales. Proper 
modeling of the deterministic tidal veloc- 
itv field. ~articularlv on the smaller hori- , . 
zontal length scales, is therefore of much 
more importance than a detailed modeling 
of the genuine turbulence. Under favor- 
able conditions, once the deterministic 
tidal velocity field is sufficiently irregular 
in space, large-scale stirring by chaotic 
particle movements is already implied. 
This stirring can also account for the 
patchiness and multiple maxima in the 
concentration distribution of effluent from 
point discharges (33). This connection 
may explain why some parts of a tidal area 
are rapidly flushed but in others water 
seems to be stagnant for a longer time, 
keeping biological and chemical processes 
with a large reaction time scale viable 
against the always present dispersion pro- 
cesses. The process of chaotic stirring we 
have presented here seems generic in that 
it mav occur in manv tidal embavments 
worldwide where the bottom topography 
creates sufficient spatial complexity in the 
tidal current velocity field. Such stirring 
could be detected with the procedures de- 
scribed here by simulation of the tidal veloc- 
ity field with a numerical model. This model 
would need sufficient spatial resolution, par- 
ticularly of the bottom topography, and a 
proper representation of the nonlinear terms 
in the equations of motion. 
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