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Abetalipoproteinemia is a human genetic disease that is characterized by a defect in the 
assembly or secretion of plasma very low density lipoproteins and chylomicrons. The 
microsomal triglyceride transfer protein (MTP), which is located in the lumen of microsomes 
isolated from the liver and intestine, has been proposed to function in lipoprotein assembly. 
MTP activity and the 88-kilodalton component of MTP were present in intestinal biopsy 
samples from eight control individuals but were absent in four abetalipoproteinemic sub- 
jects. This finding suggests that a defect in MTP is the basis for abetalipoproteinemia and 
that MTP is indeed required for lipoprotein assembly. 

Abetalipoproteinemia is an autosomal-re- 
cessive disease that is characterized by a 
virtual absence of plasma lipoproteins that 
contain apolipoprotein B (apoB) and by 
low plasma concentrations of triglyceride 
(TG) and cholesterol (1). These abnormal- 
ities are the result of a genetic defect in the - 
assembly or secretion of very low density 
lipoproteins (VLDLs) in the liver and of 
chylomicrons in the intestine, resulting in 
retinitis pigmentosa, spinocerebellar degen- 
eration with ataxia, and a bleeding diathe- 
sis secondary to malabsorption of fat-soluble 
vitamins. The molecular basis for the pri- 
mary defect in abetalipoproteinernia has 
not been determined. TG, phospholipid, 
and cholesterol synthesis are not impaired 
( I ) ,  and linkage between the apoB gene 
and abetalipoproteinernia has been exclud- 
ed by restriction fragment length polymor- 
phism (RFLP) analysis in several families 
(2, 3). 

We investigated the possibility that a 
defect in the microsomal TG transfer pro- 
tein. (MTP) may be the proximal cause of 
abetalipoproteinernia. MTP is a soluble 
protein present in the lumen of microsomes 

isolated from liver and intestine (4). It 
mediates the transport of TG, cholesteryl 
ester, and phosphatidylcholine (PC) be- 
tween membranes (5). The ability of MTP 
to transport TG between membranes, to- 
gether with its tissue distribution and sub- 
cellular location, has led to the suggestion 
that MTP functions in the assembly of 
plasma lipoproteins (4). 

MTP has been purified from bovine liver 
and characterized (5). It is a heterodimer of 
58- and 88-kD peptides (6). Characteriza- 
tion of the 58-kD component indicated 
that it is the previously described multi- 
functional protein, protein disulfide 
isomerase (PDI) (7). The role of PDI in the 
transfer protein complex is not known. At a 
minimum, PDI appears to be necessary to 
maintain the structural integrity of the 
transfer protein (8), but a larger role cannot 
be excluded. Because PDI by itself does not 
have lipid transfer activity, the 88-kD sub- 
unit is either the active component or it 
confers transfer activity to the protein com- 
plex. 

MTP activities in duodenal or duodenal- 
ieiunal junction biopsy samples obtained . - 
from ab~tal ipoprotei~e~ic  (9) and normal 
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lA), TG transfer activit; (10) was readily 
detectable. TG transfer activity was not 
detected (55% of the mean of the normal 
subjects) in the, biopsy tissue from any of 
the four abetalipoproteinemic subjects (Fig. 
1B and Table 1). To demonstrate that the 
lack of detectable TG transfer activity in 
individuals with abetalipoproteinernia was 

not related to an inabilitv of deoxvcholate 
to release MTP from thd microsokes, we 
sonicated the microsomes from one abeta- 
lipoproteinemic subject for 5 min after de- 
tergent treatment. Sonication releases TG 
transfer activitv with an efficiencv comua- 
rable to that of detergent treatment. Even 
after sonication, no TG transfer activitv 
was detected. 

To demonstrate that the lack of detect- 
able TG transfer activity in the abetali- 
poproteinemic individuals was not related 
to an inabilitv to detect activitv in cells that 
contain large intracellular fat droplets, as 
occur in abetali~o~roteinemia. we mea- . . 
sured TG transfer activity in biopsy samples 
from a subject with Anderson's disease (also 
referred to as chylomicron retention dis- 
ease) (1 1) and a subject with homozygous 
hypobetalipoproteinemia (1 2). In these two 
genetic diseases, defects occur in the assem- 
blv or secretion of chvlomicrons. and affect- 
ed individuals have' large fat droplets in 
their enterocytes, analogous to individuals 
with abetalipoproteinernia. In addition, 
TG transfer activity was measured in an 
intestinal biopsy sample taken from a nor- 
mal subject who had not fasted before the 
biopsy. In all three individuals, TG transfer 
activity comparable to that of the control 
subjects was measured (Table I), confirm- 

Protein (pg) 

Fig. 1. TG transfer activity in (A) five normal and 
(B) four abetalipoproteinemic individuals. TG 
transfer activity was measured in homogenized 
intestinal biopsy samples. Results are ex- 
pressed as the percentage of the total [I4C]TG 
transferred from donor to acceptor membranes 
in a 1 -hour assay as a function of the amount of 
intestinal protein that was treated with deoxy- 
cholate to release TG transfer activity. 
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ing that the presence of intracellular lipid 
droplets does not preclude the measurement 
of TG transfer activity. 

Soluble proteins obtained after deter- 
gent treatment of the intestinal biopsy tis- 
sue homogenates were analyzed by protein 
immunoblotting (13) with antibodies to the 
88-kD component of bovine MTP (14). 
The initial immunoblot analysis of two 
control subjects was performed with anti- 
bodies that had been affinity purified with 
bovine MTP. In both control subjects, a 
single band corresponding to the 88-kD 
component of bovine MTP was identified 
(Fig. 2A). To increase the probability of 
detecting small amounts of the 88-kD com- 
ponent of MTP (15), we used unfraction- 
ated antiserum in subsequent analyses, even 
though some cross-reactivity with other 

Table 1. TG transfer activity in intestinal biopsy 
samples. 

Subjects Normalized TG 
transfer activity* 

proteins was apparent. Bands comparable to 
that of the 88-kD component of bovine 
MTP were observed in all six control sub- 
jects examined (Fig. 2, B and C). In con- 
trast, no protein corresponding to the 88- 
kD component was detected in the four 
abetalipoproteinemic subjects (Fig. 2D). A 
similar analysis was performed with the 
unfractionated intestinal biopsy tissue ho- 
mogenates from two of the abetalipopro- 
teinemic subjects. Again, no band corre- 
sponding to the 88-kD component of MTP 
was apparent. Two bands with mobilities 
intermediate between the 58- and 88-kD 
components of MTP were present in all six 
control and four abetalipoproteinemic sub- 
jects examined with unfractionated antise- 
rum. Because these bands were not ob- 
served with affinity-purified antibodies (Fig. 
2A), they have been attributed to contam- 
inating antibodies that are specific for pro- 
teins other than MTP. As a control, immu- 
noblot analysis with antibodies to PDI 
demonstrated the presence of the 58-kD 
component of MTP (PDI) in the two abe- 
talipoproteinemic subjects tested (1 6). 

Normal controls (n = 5) 0.33 + 0.16 
Abetalipoproteinemia (n = 4) 0.01 1 2 0.004 Our study suggests that MTP plays an 

Anderson's disease (n = 11 0.28 obligatory role in the assembly of VLDL in 
~omozy~ous hypobeta- ' 0.18 the liver and chylomicrons in the intestine, 

lipoproteinemia (n = 1) probably by mediating the transport of lipid 
Nonfasted control (n = 1) 0.36 molecules from their site of synthesis in the 
The activity of a bovine MTP standard was measured endoplasmic (ER) ' membrane to 
each time an assay was performed. The TG transfer nascent lipoprotein particles within the ER . . 
activity from each intestinal biopsy sample was divid- as they are assemble& n i s  model for lipo- 
ed by that of the standard MTP to normalize the 
activities between experiments, For the first two groups protein assembly is consistent with previous 
of subjects, TG transfer activity is the mean * SD. studies: Higgins and Hutson (17) showed 

Fig. 2. lmmunoblot analysis of MTP. Aliquots of A 
purified bovine MTP (lane 1 of all four panels) or --- 1 2 3  - =I 2 3 4  

the 103,000g supernatant after treatment of 
homogenized intestinal biopsy samples with 
deoxycholate were subjected to SDSpoly- 
acrylamide gel electrophoresis and immuno- 88- - - 88 - - 
blotting with either antiserum or affinity-purified - 
ant~bodies to the 88-kD subunit of MTP. (A) 58- 58- 
Lanes 2 and 3, soluble protein corresponding 
to 34 and 25 pg of homogenate protein, re- 
spectively, from two normal subjects, probed 
with affinity-purified antibodies. (B) Lanes 2 to 
4, soluble protein corresponding to 23 pg of c D 
homogenate protein from three additional nor- I 4 I 
ma1 subjects, probed with unfractionated anti- 
serum. (C) Lane 2, solubte protein correspond- 
ing to 15 pg of homogenate protein from a 
subject with Anderson's disease; lane 3, solu- 
ble protein corresponding to 25 pg of homog- 88-' 
enate protein from an individual with homozy- 
gous hypobetalipoproteinemia; lane 4, soluble 58- 
protein corresponding to 25 pg of homogenate 
protein from a nonfasted normal individual. Sam- 
ples were probed with unfractionated antiserum. 
(D) Lanes 2 to 5, soluble protein corresponding 
to 18 pg (lane 2) and 23 pg (lanes 3 to 5) of 
homogenate protein from four abetalipoproteinemic subjects, probed with unfractionated antiserum. 
Lanes 6 and 7, 100 pg of unfractlonated intestinal homogenate protein (from abetal~poproteinemic 
subjects corresponding to lanes 4 and 5) were subjected to electrophoresis and immunoblotting with 
unfractionated antiserum. The mobilities of the 58- and 88-kD components of bovlne MTP are 
indicated. The figure represents a composite from several independent immunoblots. 

that lipoproteins isolated from a rat liver 
Golgi fraction were consistently larger than 
those isolated from an ER fraction, which 
suggests the addition or transfer of lipid 
molecules to the nascent particles. The 
progressive addition of lipid to a developing 
lipoprotein particle was also demonstrated 
in the pulse-chase studies of Janero and 
Lane (1 8) and Bostrom et al. (1 9). 

The absence of the 88-kD component of 
MTP in individuals with abetali~o~roteine- . . 
mia could be attributable either to its down- 
regulation to a nondetectable level or to a 
genetic defect in MTP or a factor that 
controls MTP concentration. Although 
MTP could be down-regulated in response 
to the cells not secreting lipoproteins, this 
explanation is unlikely because MTP con- 
centrations were normal in the subjects 
with Anderson's disease or homozygous hy- 
pobetalipoproteinemia, diseases in which 
enterocytes do not secrete lipoproteins. 
Given that all other known aspects of 
lipoprotein synthesis and assembly-the ex- 
pression of a normal apoB gene (2, 3, 20), 
as well as TG, phospholipid, and cholester- 
ol synthesis-are not impaired in abetali- 
poproteinemic subjects, it is likely that the 
proximal cause of abetalipoproteinemia is a 
genetic defect in the 88-kD component of 
MTP or in the regulation of its synthesis or 
degradation. 
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Tyrosine Phosphorylation of CD22 
During B Cell Activation 
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Ligation of the antigen receptor on B cells induces the rapid phosphorylation of tyrosine 
on a number of cellular proteins. A monoclonal antibody that recognized a tyrosine- 
phosphorylated cell surface protein that was present in activated B cells was generated. 
Amino acid sequence analysis showed that this 140-kilodalton protein was CD22, a B 
cell-specific cell surface glycoprotein and putative extracellular ligand of the protein ty- 
rosine phosphatase CD45. Tyrosine phosphorylation of CD22 may be important in B cell 
signal transduction, possibly through regulation of the adhesiveness of activated B cells. 

T h e  B lymphocyte antigen receptor com- 
wlex consists of membrane immunoelobulin 

u 

(Ig), at least two accessory molecules (Ig-a 
and Ig-P) (I), several members of the Src 
family of protein tyrosine kinases (2, 3), 
and a 72-kD protein tyrosine kinase that 
may be encoded by the syk gene (4, 5). 
Cross-linking of surface Ig induces rapid 
increases in both tyrosine protein phos- 
phorylation (6-8) and inositol phospholip- 
id hydrolysis (9). Evidence suggests that the 
increased inositol phospholipid hydrolysis is 
induced, at least in part, by tyrosine phos- 
phorylation. (i) Phospholipase C-y, which 
is regulated by tyrosine phosphorylation in 
fibroblasts (JO), is phosphorylated on tyro- 
sine during B cell activation (I I). (ii) The 
increase in free intracellular Ca2+ that re- 
sults from inositol phospholipid hydrolysis 
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is prevented by treatment of B cells with 
herbimycin, an inhibitor of tyrosine protein 
phosphorylation (1 2). (iii) Expression of 
the protein tyrosine phosphatase CD45 is 
required for the stimulation of phosphati- 
dylinositol hydrolysis in a murine plasmacy- 
toma (13). 

Protein tyrosine phosphorylation may in 
fact represent the trigger or initial intracel- 
lular biochemical signaling event induced 
by the ligation of surface Ig. It is not clear 
how ligation of this receptor complex in- 
duces increased substrate phosphorylation, 
but it is likely that the Src-family kinases or 
the 72-kD kinase plays a role. 

Phospholipase C-y is not the only pro- 
tein to undergo rapid tyrosine phosphoryla- 
tion after cross-linking of surface Ie with - - 
antibody. Approximately ten newly phos- 
phorylated proteins can be detected by im- 
munoblotting of total cell lysates with an- 
tibodies to phosphotyrosine ( 6 4 ,  includ- 
ing the waw proto-oncogene product (14), 
the 72-kD cytosolic protein tyrosine kinase 
(4, 6), the 42-kD mitogen-activated (MAP)/ 
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