
nature. Microorganisms have used antibiot- 
ic inactivation to overcome natural (16) 
and drug-related defenses of the host (1 7). 
The mechanism of resistance encoded by 
HMl demonstrates that the same strategy 
can be used by hosts to block microorgan- 
ism growth. Genes that encode resistance 
to specific diseases may be engineered in the 
'laboratory, as has been done for a virulence 
factor (18). 
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Structure of a Fibronectin Type Ill Domain from 
Tenascin Phased by MAD Analysis of the 

Selenomethionyl Protein 

Daniel J. Leahy, Wayne A. Hendrickson, lkramuddin Aukhil, 
Harold P. Erickson 

Fibronectin type Ill domains are found in many different proteins including cell surface 
receptors and cell adhesion molecules. The crystal structure of one such domain from the 
extracellular matrix protein tenascin was determined. The structure was solved by mul- 
tiwavelength anomalous diffraction (MAD) phasing of the selenomethionyl protein and has 
been refined to 1.8 angstrom resolution. The folding topology of this domain is identical to 
that of the extracellular domains of the human growth hormone receptor, the second 
domain of CD4, and PapD. Although distinct, this topology is similar to that of immuno- 
globulin constant domains. An Arg-Gly-Asp (RGD) sequence that can function for cell 
adhesion is found in a tight turn on an exposed loop. 

Domains with amino acid (aa) sequence 
similarity to the type 111 repeats of fibronec- 
tin (FN-I11 domains) are found in a wide 
variety of proteins including adhesion mol- 
ecules, cytokine receptors, muscle-related 
proteins, collagens, and other extracellular 
matrix (ECM) proteins. Although most of 
these -90-aa domains have no established 
function, certain of them act as ligands or 
receptors at the cell surface. For example, 
the tenth FN-111 repeat of fibronectin 
(FNfnlO) interacts with integrins through 
its RGD sequence motif (1). The interac-' 
tion between fibronectin and integrins is 
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believed to anchor cells to the ECM and 
may also provide cells with important envi- 
ronmental cues. 

Tenascin is a large ECM protein made 
up of six identical subunits in a hexabra- 
chion structure [reviewed in (2)). Each 
subunit comprises a string of small, glob- 
ular domains, including 8 to 15 FN-111 
domains. Tenascin has a specific pattern 
of expression during embryonic develop- 
ment and is abundant in many tumors, but 
it is present in restricted locations in 
normal adult tissues. The functions of 
tenascin are still unclear, but roles in 
tissue growth and restructuring are sug- 
gested. The third FN-I11 domain (TNfn3) 
of both human and chick tenascin has an 
RGD sequence in the same location as 
that in FNfnlO. Although the cell adhe- 
sion activity of native tenascin is still 
controversial (2, 3), the isolated TNfn3 
domain promotes strong adhesion and 
spreading of endothelial cells, apparently 
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Table 1. Values for the number of independent reflections measured, the percentage of the 
theoretically possible reflections measured (completeness), the percentage of measured reflections 
for which Ifl > 3u, and the Us,,, [ZhZjl, - (I(h))lEhZili(h) where li(h) is the it" measurement and 
(I(h)) is the weighted mean of all measurements of /(h)] are shown for each wavelength. Bijvoet pairs 
were not distinguished for these statistics. The values shown are for the resolution range 30.0 to 1.8 
A, whereas the values in parentheses represent the resolution range 30.0 to 3.0 A. 

Wave- 
length 

(A1 
Independent 
reflections 

Complete- 
ness 
(%I 

mediated by the vitronectin receptor (the 
avP3 integrin) (4). We have undertaken a 
MAD crystallographic study of TNfn3 to 
provide a structural basis for understand- 
ing RGD dependent interactions and to 
gain insight into this large class of related 
protein domains. 

The 91-aa TNfn3 domain was ex- 
pressed in Escherichia coli in both native 
and selenomethionine (Se-Met) substitut- 
ed forms (5-7). Se-Met substituted TNfn3 
was produced so that the anomalous dif- 
fraction signal from Se could be used to 
solve the crystallographic phase problem 
(8. 9). A fraction of ~urified TNfn3 con- . ,  , 
taining the N-formyl-Met was used for 
crystallization (10). 

Difiaction data for MAD analysis were 
collected on imaging phosphor plates at 
the Cornell High Energy Synchrotron 
Source (CHESS) (Table 1) (1 I). The data 
were processed with the program DENZO 
(1 2), reduced with the CCP4 package (1 3, 
14), and analyzed to extract phases with 
the MADSYS programs (15). Both the 
anomalous diffraction differences (see Ta- 
ble 2) and the agreement of IFTI, IFA[, and 
A+ values produced by the MAD phasing 
procedure for multiple measurements of 
the same reflection indicated that the 
phasing power of the anomalous signal 
deteriorated for reflections bevond 3.8 h; d , 
(crystal lattice) spacings. Solution of the 
Se site structure bv both Patterson and 
direct methods tedhniques followed by 
least-squares refinement revealed two par- 
tially occupied, high-B value Se sites sep- 
arated by 3.0 h; (16). The proximity of the 
Se sites indicated that both sites must arise 
from the same Se-Met side chain. Ulti- 
mately, both sites were found to corre- 
spond to conformers of Met880; the amino- 
terminal Met is disordered and does not 
contribute to the structure. 

The presence of clear solvent channels 
in electron density maps calculated at 4.0 h; 
resolution allowed identification of the cor- 
rect space-group enantiomorph as P432,2. 
The decrease in phasing power beyond 3.8 
h; d-spacings led us to attempt to improve 

the electron density maps by solvent flat- 
tening and density truncation as in (1 7) by 
using a hand drawn mask, but this proce- 
dure produced little or no discernible im- 
provement in the electron density maps, 
presumably because of the low solvent con- 
tent of the crystals. 

Maps made at 4.0, 3.5, 3.0, and 3.0 h; 
after solvent flattening were all used to 
produce a trace of the a carbon (Ca) 
backbone. For the unflattened 3.0 h; map, 
all data between 3.8 and 3.0 h; for which 
lFAl < 2u were omitted from the map 
calculation (-45% of the data in this 
resolution range). As we were finishing 
the chain tracing, the secondary structure 
of FNfnlO as determined by nuclear mag- 
netic resonance (NMR) was reported 
(18). To ensure an independent structure 
determination, we did not consult this 
result until after partially refining our 
structure, at which time the structural 
results were found to agree. The TNfn3 
model has now been refined (19) to an R 
value (ZIIF,I - IFcll/ZIFoI, where F, and F, 
are the observed and calculated structure 
factors, respectively) of 0.196 for data 
10.0 to 1.8 h; with IF1 > 3 u  (0.202 for all 
data). The root-mean-square (rms) devia- 
tions from ideal values are 0.012 h; for 
bond lengths, 2.9" for angles, and 2.4" for 
peptide bond dihedral angles. The model 
consists of the carbonyl atoms of R802, 
residues L803 to T891, and 74 water 
molecules (789 atoms total) (20). Re- 
strained isotropic temperature factors have 
been refined for each atom. The rms dif- 
ference between B factors of main chain 
atoms is 1.5 and 1.8 h;' for covalent bond 
(1-2) and angle (1-3) related atoms, re- 
spectively. All residues have energetically 
acceptable Ramachandran angles, and the 
side chains of five residues (D841, V871, 
M880, T888, and T890) have been mod- 
eled with alternative conformations. Two 
loop regions (L827 to E829 and R877 to 
M880) exhibit high B factors and less well 
defined density. Sufficient density is nev- 
ertheless present to provide confidence in 
the main chain positions, but side chain 

Fig. 1. (A) A region of the original MAD-phased 
electron density encompassing strands A, B, 
and E is shown with the final atomic model of 
TNfn3. The MAD-phased map was calculated 
with data from 10.0 to 3.0 A for which all 
reflections in the range 3.8 to 3.0 A for which 
lFnl > 20 were omitted and is contoured at 
I.&. (B) The final model for this region is 
shown with a map calculated with (21F01 - IFJ) 
coefficients for data 10.0 to 1.8 A and con- 
toured at 1 .&. 

positions in these regions are ambiguous. 
A representative view of the electron den- 
sity is shown in Fig. 1. 

The structure of TNfn3 has overall 
dimensions of -40 by 17 by 28 h; and 
consists of seven p strands arranged into 
two p sheets, one of four and one of three 
strands. A ribbon diagram of the TNfn3 
structure is shown in Fig. 2A. The topol- 
ogy of the strands is identical to that of the 
D2 domain of CD4 (21), the bacterial 
chaperonin PapD (22), and the extracel- 
lular domains of human growth hormone 
receptor (hGHR1 and hGHR2) (23). We 
have thus labeled the strands A, B, C, C', 
E, F, and G by analogy with these struc- 
tures, and the position of these strands in 
the aa sequence is shown in Fig. 3. The 
P-sheet designations from the NMR sec- 
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TNfn3, hGHF12 and tg Cm fcdhhg sqmqmkm is yrfwmn. The left image is TNfn3 (did lines) 
s u w h p m d * ~ ( d e s h e d ~ ( e 4 ) . m e ~ t h a t a r e h i g h l y c o n s e r v e d i n  FN-llldamairw 
FW€4,W23,Y83?, L19g3, andylses hTNfri35 creabp-.The rightimageisTNfn3 (did l i )  
-wilRIgCH2(daehedllnes)@3).hbolit- ,L.- , ewytenthresiaRofTNfn3is 
m a r k e d ~ ~ n a p e n o i r d e , a n d t h e a m i n o - a n d ~ m ~ . ~ w a s k r W a R y ~  

TNfn3 and hGHR1, and 1.30 A for 46 residues of TNfn3 and IgCH2. One sheet (strands C', C, F, and G) uf 3% d CtM s u p h p o m  well with the 
conespanding sheet of TNfn3, but the other sheet (strands A B, and E) does not superimpose wall r~~ ofthe orientalion of the C', C. F, and G sheet. 

TNfn3 - R 

HGHR2 -1VQ 

HGHRl - GGTVD-EKCFSV 

IgCH2 - 
A 

C-) 
B - 

Fig. 3. Sequence alignments of FNfnlO, TNfn3, hGHR1, hGHR2, and after superposition of the structures are shaded. Residues that are highly 
IgCH2. The latter three domains were aligned with TNfn3 after superpo- conserved in FN-Ill domains are enclosed in boxes. The FNfnlO RGD 
sition of the structures as described in the legend to Fig. 1, whereas the sequence is marked with an asterisk, and the positions of the p strands in 
FNfnlO sequence was aligned with TNfn3 by inspection. Residues whose TNfn3 are shown below the sequences. The numbering is for tenascin 
Cas are less than 2.5 A away from the corresponding residue in TNfn3 according to (6). 

Table 2. Anomalous diffraction differences and scattering factors for a wavelength and serve as an estimate of the noise in the anomalous 
representative crystal of TNfn3. Observed diffraction ratios represent signals; f" for the pre-edge wavelength (0.9872 A) was fixed at the 
(AIf12)lnl(lq2)ln where AIFJ is the absolute value of the Bijvoet difference theoretical value, 0.506 (13), whereas the other scattering factors were 
at one wavelength (diagonal elements) or the dispersive difference refined following multiple MADLSQ cycles as described in (14). Compar- 
between intersecting wavelengths for off-diagonal elements. The Bijvoet ison of the anomalous diffraction ratios from different resolution blocks 
differences for centric reflections are shown in parentheses for each shows the loss of signal with resolution due to disorder of the Se site. 

Wave- Observed ratio (30.0 > d > 6.0 A) Observed ratio (6.0 > d > 3.2 A) Observed ratio (3.2 s d > 2.5 A) 
length 

( 1  0.9872 0.9792 0.9790 0.9717 0.9872 0.9792 0.9790 0.9717 0.9872 0.9792 0.9790 0.9717 f' f" 
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ondary structure analysis of FNhlO (18) ing pattern. The topology of these do- 
are also compatible with this tertiary fold- mains is similar to that of immunoglobulin 

Flg. 4. Schematic diagrams 
of (A) FN-Ill domains and 
(B) lgCH2 domains with the 
positions of highly con- 
served residues indicated. 
The three-dimensional rela- 
tionship of the sheets can 
be reconstructed for each 
structure by closing the two 
sheets as if they were an 
open book lyinp face up on E C ' C  E C '  C  

the page. liallcases, the conserved residues point into the hydrophobic core. For FN-Ill domains, 
the conserved Pro and Trp contact one another as do the Leu and the Tyr from the F strand. For the 
lgCH2 domains, the two cysteines form a disulfide bond that contacts one side of the conserved 
C-strand Trp whereas the Leu contacts the other side of this Trp. The C-strand Tyr of FN-Ill domains 
is in a position analogous to the C-strand Trp of lgCH2 domains, but the side chains of these two 
residues point in opposite directions in the aligned structures. 

Flg. 5. (A) A representation of the Ca backbor~t: of TNfn3 is shown. The amino terminus is in blue. 
the carboxyl terminus is in yellow, and the RGD loop is in red. This view is orthogonal to the view in 
Fig. 2A. (8) The electron density in the RGD-loop region is shown. The density was calculated with 
(2F, - FJ coefficients and is contoured at 1 . 0 ~ .  (C) A space-filling model for how FN-Ill domains 
might align in a repeated array. Different colored TNfn3 domains are used as the building blocks, 
and the RGD loop on the white domain has been colored red. The FN-Ill domain on the 
amino-terminal side of the white domain is in blue, and the domain carboxyl terminal to the white 
domain is in yellow. The model was produced by using the constraints described in the text; (A) was 
made with the program Insight II (Biosym, San Diego, California), and (C) was made with the 
program QUANTA (Polygen). 

(Ig) constant domains (24) with the nota- 
ble exception of the "sheet switching" of 
the C' strand. A stereoplot of an Ca trace 
of T N h 3  superimposed with both the 
hGHR2 and IgCH2 domains in Fig. 2B 
illustrates the remarkable structural simi- 
larity of these domains. The homology of 
hGHR2 to the FN-111 motif has previously 
been noted by Patthy (25) and Bazan (26) 
on the basis of limited aa identity. In 
addition, Bazan suggested a more general 
homology of the FN-111 motif to the 
hGHRl and similar Ig-like domains in 
other receptors. The identification of a 
class of domains with the C' strand 
switched, however, has only been deduced 
from the recent x-ray structures and the 
secondary structure of FNfnlO determined 
by NMR. 

Alignment of the structures of TNfn3 
with hGHR and Ig constant domains im- 
plies the alignment of the aa sequences 
that is shown in Fig. 3. Although several 
highly conserved hydrophobic core resi- 
dues of TNfn3 and hGHR match precise- 
ly, there is no obvious aa similarity be- 
tween Ig-constant domains and FN-111 
domains. Schematic diagrams of FN-111 
and IgCH2 domains with the positions of 
highly conserved residues indicated are 
shown in Fig. 4. The distinctly different 
pattern of conserved residues and packing 
of the hydrophobic core observed between 
FN-I11 and Ig-constant domains raises the 
possibility that, despite similar structures, 
these two domain types have independent 
origins. 

FN-111 domains are frequently found in 
a repeated array, which when visualized by 
electron microscopy appears as an extend- 
ed and relatively straight strand. The 15 
FN-111 repeats of tenascin form the thick 
segment of the hexabrachion arm, with a 
repeat spacing of 32 A (7). Analysis of 
tenascin FN-111 sequences and the T N h 3  
structure indicates that residues R802 to 
T891 of TNfn3 comprise one FN-I11 re- 
peat, and that in the hexabrachion arm 
repeats of this size are concatenated either 
directly or through a single aa insertion. 
The TNfn3 structure reveals a distance of 
33.5 between the Col of R802 and 
T891, implying a repeat distance of 36 A 
or more along the amino- to carboxyl- 
terminal axis. In order to achieve .the 32 A 
spacing between domains, the amino- to 
carboxyl-terminal axes of successive do- 
mains must thus be tilted relative to one 
another. Moreover, since the amino and 
carboxyl termini are located on the same 
side of the domain, it seems likely that 
alternative domains are rotated by -180". 
Such an approximate twofold screw axis 
relates Dl and D2 of CD4 (21) and may 
serve to reduce the flexibility of the FN-I11 
arrays, producing a straight rather than 
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arbitrarily curved strand. A model for how 
these domains may align themselves that 
is consistent with the above constraints is 
shown in Fig. 5C. 

The RGD sequence in TNfn3 occurs in 
an extended type 11' P-hairpin loop formed 
between the F and G strands by residues 
R877 to M880. Type 11' turns typically 
require Gly in the second position (27), 
suggesting that this conformation may be 
important for RGD-dependent cell adhe- 
sion. Electron density for the RGD-loop 
region of TNfn3 is shown in Fig. 5B. The 
single TNfn3 domain, as well as larger 
tenascin segments with additional domains 
on the carboxyl-terminal end, support ad- 
hesion and spreading of endothelial cells 
through the vitronectin receptor in an 
RGD-dependent manner (7). Tenascin seg- 
ments with additional domains on the ami- 
no terminus give reduced cell adhesion and 
no spreading. Since the RGD loop on 
TNfn3 is adjacent to the amino terminus 
(see Fig. 5A), it seems likely that the 
domain TNfn2 partially blocks the accessi- 
bility of this loop. 

The RGD motif of FNfnlO is in the 
same location as in TNfn3, but the FNfnlO 
loop contains four extra residues, apparent- 
ly two residues each on either side of the 
RGD sequence (see Fig. 3). These extra 
residues must serve to extend the active 
FNfnlO RGD sequence out from the do- 
main. If two residues were added to both 
the F and G strands of TNfn3, in each case 
continuing the p sheet, the RGD loop 
could be extended up to 7 A. Alternatively, 
these extra amino acids may be inserted as 
loop rather than the p sheet, increasing the 
flexibility as well as extending the RGD 
unit. This extension may be essential to 
provide exposure of the RGD loop in the 
intact fibronectin molecule, where it inter- 
acts with the a#, integrin. The less ex- 
tended RGD loop of human tenascin appar- 
ently does not interact with this integrin 
(7). Other active RGD sequences in known 
structures occur on flexible loops as seen in 
the snake venom "disintegrins" kistrin (28) 
and echistatin (29) and in the foot and 
mouth disease virus (30). The presentation 
of the RGD sequence on a flexible loop, 
extended from the protein surface, appears 
to be a common motif of the RGD-contain- 
ing cell adhesion molecules. 
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