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the extracellular and transmembrane do- 
mains resulted in replacement of three 
codons in both a and P (8) but had no 

Role of Transmembrane Domain Interactions in the effecton association (Fig- 2). We used this 
restriction site in order to replace the 

Assembly of Class II MHC Molecules transmembrane domains of a and B bv the - 
transmembrane domain of the a chain of 

Pierre COSSO~ and Juan S. Bonifacino* the interleukin-2 receptor (the Tac anti- 
gen) (I I) .  The resulting aTa and PTp 

Evidence is presented that suggests a role for transmembrane domain interactions in chimeras associated, as assessed by copre- 
the assembly of class II major histocompatibility complex (MHC) molecules. Mutations cipitation with conformation-independent 
in the transmembrane domains of the class II MHC a or P chains resulted in proteins Abs (Fig. 2A). However, conformational 
that did not generate complexes recognized by conformation-dependent antibodies and epitopes found in normal class I1 MHC 
that were largely retained in the endoplasmic reticulum. Insertion of the a and P trans- complexes were not generated (Fig. 2B), 
membrane domains into other proteins allowed the chimeric proteins to assemble, suggesting that the transmembrane do- 
suggesting a direct interaction of the a and P transmembrane domains. The interactions mains of the a and P chains are required 
were mediated by a structural motif involving several glycine residues on the same face for correct assembly of ap heterodimers. 
of a putative a helix. The nature of the chimeric protein species 

coprecipitated with conformation-inde- 
pendent but not conformation-dependent 
Abs is unclear. One possibility is that they 

Class I1 molecules of the MHC are mem- tors (7), we decided to examine whether represent complexes that are improperly 
brane-bound glycoprotein complexes ex- the membrane-spanning sequences were assembled or that have an abnormal con- 
pressed primarily in cells of the immune required for efficient assembly of newly formation. An alternative explanation is 
system, where the class I1 molecules func- synthesized class I1 MHC molecules. that the apparent association of the chi- 
tion to present antigenic peptides to T Normal or mutagenized a and P chains meric proteins does not reflect the forma- 
lymphocytes. Class I1 molecules are com- of the I-Ak haplotype (8) were expressed tion of specific aP dimers but rather the 
posed of two polymorphic transmembrane in COS-1 cells (9). Transfected cells were aggregation of unassembled a and P spe- 
subunits, a and p ,  that associate to form a metabolically labeled for 15 min and class cies with each other or with other intra- 
noncovalent heterodimer (1). Both chains I1 chains immunoprecipitated (9) with cellular proteins. 
are type I integral membrane proteins, conformation-independent or -dependent The subcellular localization of the nor- 
each consisting of two NH,-terminal ex- antibodies (Abs) (10) (Fig. 2). Coexpres- mal and chimeric protein species was ana- 
tracellular domains, a single membrane- sion of a and P chains resulted in copre- lyzed by immunofluorescence microscopy 
spanning sequence, and a short COOH- cipitation of both chains by conformation- with a conformation-independent Ab to 
terminal cytoplasmic tail (1). Assembly of independent Abs to the P or a chains the P chain. These studies revealed that 
the heterodimer occurs in the endoplasmic 
reticulum (ER), where the heterodimer 
associates with a type I1 integral mem- Fig. ,. (A) Sequences of 
brane protein known as the invariant (Ii) transmembrane domains 

A 
Lumen Membrane Cytoplasm 

chain (2, 3). After assembly, aPIi  com- and adjacent regions of 
plexes are transported through the Golgi class 1 1  MHC chalns of 2" 2." 8 2." 8 %@ 

system and into a prelysosomal compart- the I-Ak haplotype (22) , . . Vv~s 0 I I Q G L R S . . .  

ment, where the Ii chain is proteolytically Open boxes denote resl- 
degraded (2, 3). At this location, the aP dues that are identical in 
dimers bind antigenic peptides; the dimers '95% a l l  class I I  MHC ,$ %$= d %+= %ha 4 +a 

are then delivered to the cell surface (3). 
~ ~ ~ 1 " ~ , " i " , " f a l ~ 6 s ~  

M ~ s ~ I ~ ] c ~ I v  I F L G L ~ L  F I R H R s Q  K . . . 
The high degree of conservation of the quences (24)1 Amino 

transmembrane domains of class I1 MHC acids are numbered from B 4 4 
a and gene products among various the lnltlator methionlne of 
haplotypes and animal species (Fig. IA) the normal A: (20) and 
has suggested an essential role for these A; (21) precursors. (B) 
sequences (1, 4). Because of the known Two-dimensional repre- 
function of transmembrane interactions in sentations of 1-Ak trans- 
the assembly of other multiprotein com- membrane domains, as- 
plexes, such as in the assembly of the T Sumi" an 'On- 

figuration (13) Con- cell antigen receptor (5, 6) and Fc recep- served Gly residues on 
one face of the potential 
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whereas a substantial amount of normal a-fl 
complexes were localized to the cell surface 
(Fig. 3, A and C), species made of a T a  and 
flTfl showed a reticular staining pattern 
characteristic of the ER (Fig. 3B) and were 
barely detectable at the cell surface (Fig. 
3D). In addition, processing of newly syn- 
thesized chains into endoglycosidase H-re- 
sistant species was significantly reduced for 
the chimeric protein complexes (1 2). Thus, 
the inability to generate a population of 
correctly assembled complexes correlates 
with decreased transport out of the ER and 
to the cell surface. 

An unusual feature of the class I1 a and 
fl transmembrane domains is the high con- 
tent and conserved position of Gly residues 
(Fig. IA). If an a-helical structure for the 
transmembrane domains of these proteins is 
assumed (I 3), then five Gly residues in A: 

would be aligned on the 
same and face in of 5 t e helix (Fig. 1B). To test 
whether these Gly residues were involved 
in mediating class I1 MHC assembly, we 
replaced Gly residues by Val residues in 
both a and fl domains, and the assembly 
characteristics of the mutant proteins were 
analyzed (Fig. 2). Mutation of the Gly 
residues in normal a and B chains had the 
same effect as replacing the entire trans- 
membrane domain; the mutant chains 
seemed able to associate (Fig. 2A) but did 
not bind conformation-dependent Abs 
(Fig. 2B). The mutant proteins were also 
localized to the ER by immunofluorescence 
microscopy analysis (1 4). 

The Gly residues in the transmembrane 
domains could be required for proper fold- 
ing of the individual subunits or for correct 
assembly of the complex. To test whether 
the a and fl transmembrane domains were 
capable of interacting with each other, we 
constructed a chimeric protein in which the 
transmembrane domain of the Tac antigen 
was replaced by that of the class I1 a chain. 
Coexpression of this TaT  chimera with the 
class I1 B chain resulted in assembly that 
was dependent on the presence of Gly 
residues in the a transmembrane sequence 
(Fig. 4A). In contrast, TBT chimeras, like 
the Tac antigen, showed little coprecipita- 
tion with the normal B chain (Fig. 4A). 
Thus, the transmembrane domain of the a 
chain can mediate specific interaction with 
the fl chain even in the context of an 
unrelated protein. 

Structural features of the a and fl trans- 
membrane domains involved in mediating 
interactions were further delineated with a 

end of the cytoplasmic tail. After immuno- we quantitated assembly by measuring fl-ga- 
precipitation with Abs to the Tac antigen, lactosidase activity in the immunoprecipi- 

Fig- 2- Assembly of normal A a,p a(BII),P(BII) aTa,PTP a(-G),P(-G) 
and mutant class II MHC 
chains. COS-1 cells co- 
transfected with plasmids 219- 
encoding normal and mu- 98- - 
tant forms of class II a and p 70- 

chains (8), as indicated in 45- 
the figure, were pulse-la- 
beled for 15 min with 

- 
PSlmethionine (9). Cells 27- - 
were then lysed, and la- 
beled proteins were isolated ::! 
by immunoprecipitation with 
(A) conformation-indepen- 1 2  
dent Abs 10-2.16 (anti-$, B 
lanes 1, 3, 5, and 7) or 
FF282-4 (anti-a, lanes 2, 4, 
6, and 8) or with (6) confor- 21 9- 

mation-dependent Abs 11 - 98- - 
5.2 (anti-a, lanes 9, 11, 13, 70- 
and 15) or 408 (antias, 45- - 
lanes 10, 12, 14, and 16). 
lmmunoprecipitates were - 
analyzed by SDS-PAGE. 27- - 
Gels shown in (B) were ex- 
posed ten times longer than 20- 
those shown in (A), as im- 15- 

munoprecipitation with con- 9 10 11 12 13 14 15 16 

formation-dependent Abs resulted in weaker signals. Coexpression of the mouse li chain did not 
increase the amount of labeled complexes recovered with conformation-dependent Abs (14). 
Molecular size markers are shown at left in kilodaltons; a and B are indicated at right. 

Fig. 3. lmmunofluorescence 
microscopy localization of 
normal and chimeric class II 
MHC molecules (25). CV-1 
cells were cotransfected 
with plasmids encoding ei- 
ther normal a and 13 chains 
(A and C) or chimeric aTa 
and pTp chains (6 and D). 
At 48 hours after transfec- 
tion, cells were either fixed 
and permeabilized (A and 
B) or left intact (C and D) 
before incubation with the 
conformation-independent 
antibody 10-2.16. Ab bind- 
ing was revealed with 
rhodarnine-conjugated goat 
Abs to mouse immunoglob- 
ulins. Identical exposure 
times were used for photo- 
graphs in (C) and (D). Bar, 5 
Pm. 

quantitative coprecipitation assay (6). In 
this assay, Tac chimeras containing normal 
or mutated forms of the class I1 a or fl 
transmembrane domains were coexpressed 
with CD36 (15) chimeras containing the 
class I1 a or fl transmembrane. domains and 
Escherichia coli fl-galactosidase fused at the 
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Fig. 4. Interaction between the transmernbrane 
domains of class II MHC a and p chains. (A) 
COS-1 cells were cotransfected with DNAs 
encoding the normal class II p chain and mu- 
tants of the Tac antigen (8). Cells were pulse- 
labeled for 15 min with [35S]methionine (9), and 
~roteins were isolated bv immuno~reci~itation 
kith a MAb to Tac ( 7 ~ ~ .  ~mmund~rec'ipitates 13 P 

were analyzed by SDS:PAGE.   he pisitions 
correspondina to the different Tac species and 

P .# 

Binding to @ TM (76) Bindina to a TM (%) 

class 11 p ch;ains are indicated. (B) and (C) 
Delineation of residues involved in class II a-p 
transmembrane interactions. COS-1 cells were 
cotransfected with DNAs encoding mutants of 
the Tac antigen (8) and the chimeric proteins 
Gp-Gal (B) or &-Gal (C). At 48 hours after 
transfection, cells were lysed, and galacto- 
sidase activity was determined in whole cell TBT(-G) 
lysates and immunoprecipitates with antibody 
to Tac, as described (6). The proportion of total o 50 100 o 50 100 150 
galactosidase activity coprecipitated with the 
d~fferent Tac mutants is expressed as a percentage of a control determination included in every 
experiment. The control (arbitrarily defined as 100%) consisted of TaT association with 8-p-Gal in 
(B) and association of TpT with &-Gal in (C). Results are the mean 2 SD of values obtained in at 
least three independent experiments. TM, transmembrane. 

tates. This assay confirmed that the a and fi 
transmembrane domains are ca~able of as- 
sociating with each other even when placed 
in the context of other integral membrane 
proteins (Fig. 4, B and C). Interactions 
detected with this assay were also abolished 
bv the mutation of Glv into Val residues in 
either the a or p transmembrane sequences 
(Fig. 4, B and C). 

The observed interactions tended to 
favor hetero- over homo-associations (Fig. 
4, B and C). This selectivity would be 
difficult to explain if only Gly residues 
were involved in interactions. Additional 
elements were noted that might contrib- 
ute to the observed Dattern of association. 
First, there is a negatively charged residue 
in a (G1uZL8) and a positively charged 
residue in P (Lys224) near the boundary 
between the lumenal and transmembrane 
domains (Fig. 1B). Second, residues with 
bulky hydrophobic side chains potentially 
face Gly residues in the lower part of both 
the a and p transmembrane helices (Fig. 
1B). Insertion of three codons that 
changed the interfacial GIuZL8 in a to Lys 
resulted in a marked decrease in binding to 
the p transmembrane domain (Fig. 4B). 
Conversely, a deletion of three codons 
that changed LysZZ4 in fi into Asp reduced 
binding to the a transmembrane domain 
(Fig. 4C) (1 6). Changing the alternating 
Gly and bulky hydrophobic residues in the 
a transmembrane sequence into the con- 
figuration found in P (Gly236 + Phe, 
Phe239 + Gly, and Gly243 + Ile) also 
reduced the magnitude of interaction with 
p (Fig. 4B) and increased interaction with 
a (Fig. 4C). 

Although the mutagenesis analysis per- 
formed is not exhaustive. the results de- 

scribed above are consistent with a direct 
interaction involving Gly-rich faces of 
the putative a helices (1 7). The muta- 
tions shown to affect assembly involve 
transmembrane residues with either no 
side chains (Gly) or nonpolar side chains 
(Phe and Ile). Thus, the nature of the 
interaction between the a and p trans- 
membrane domains is ~robablv distinct 
from other interactions shown to involve 
potentially charged transmembrane resi- 
dues (5-7). Molecular packing of amino 
acid side chains away from the lipid envi- 
ronment and polar interactions between 
the polypeptide backbones could provide 
the driving forces for this type of associa- 
tion. In addition, electrostatic interac- 
tions between interfacial chareed residues 

u 

would also contribute to the attraction of 
the transmembrane helices. According to 
this model, specificity would arise from the 
spatial configuration of some of the Gly 
residues and complementing side chains 
on the interacting surfaces, as well as from 
charged residues at the lumen-membrane 
interface. 

The subtle nature of this ~utative in- 
teraction motif raises the prospect that 
other proteins may be similarly engaged in 
transmembrane associations. Glycophorin 
A is another protein for which there is 
evidence for a role of transmembrane do- 
main interactions in dimerization (1 8). 
The glycophorin A transmembrane se- 
quence contains four Gly residues (1 8), 
some of which may be implicated in a- 
helical pairing. The observed perturbation 
of class I1 MHC biogenesis by substitution 
of nonpolar transmembrane residues em- 
phasizes the importance of this type of 
interaction in the assembly of multipro- 

tein complexes in vivo. Whereas the lum- 
enal domains of class I1 MHC subunits 
have an intrinsic ability to associate (19), 
the role of transmembrane domain inter- 
actions would be to promote the formation 
of correctly assembled complexes in the 
ER, thereby increasing the expression of 
functional molecules. 
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cates no such excitation in the lamprey (5). 
Buchanan (6) has shown by computer sim­
ulation that synaptic contacts between sim­
ulated unit oscillators can give rise to ap­
propriate phase lags. In this report I suggest 
a form of intersegmental coupling with a 
simple, biologically plausible developmen­
tal rule: whatever synaptic contacts each 
neuron makes in its own segment, it must 
also make in neighboring segments but with 
a smaller synaptic strength. I will show by 
computer simulation that, with such "syn­
aptic spread" between equally activated os­
cillators, a constant intersegmental phase 
lag can result as long as the connections 
between oscillators are asymmetric. 

The detailed structure of the segmental 
oscillators in the lamprey is not known. 
However, a small network model (Fig. Id) 
consisting of identified neurons that are 
rhythmically active during "fictive locomo­
tion" (7) (neural activity with the same 
patterns as those recorded during locomo­
tion) has produced oscillations with phase 
relations among the three cell types that are 

Phase Coupling by Synaptic Spread in Chains of 
Coupled Neuronal Oscillators 
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Many neural systems behave as arrays of coupled oscillators, with characteristic phase 
coupling. For example, the rhythmic activation patterns giving rise to swimming in fish are 
characterized by a rostral-to-caudal phase delay in ventral root activity that is independent 
of the cycle duration. This produces a traveling wave of curvature along the body of the 
animal with a wavelength approximately equal to the body length. Here a simple mech­
anism for phase coupling in chains of equally activated oscillators is postulated: the 
synapses between the cells making up a "unit oscillator" are simply repeated in neighboring 
segments, with a reduced synaptic strength. If such coupling is asymmetric in the rostral 
and caudal directions, traveling waves of activity are produced. The intersegmental phase 
lag that develops is independent of the coupling strength over at least a tenfold range. 
Furthermore, for the unit oscillator believed to underlie central pattern generation in the 
lamprey spinal cord, such coupling can result in a phase lag that is independent of 
frequency. 


