
7), which is diagnostic of the presence of at 
least some kind of ice (5-7). There also 
appear to be many processes that can supply 
water to permanent cold traps on Mercury 
(7), and, as long as evaporation rates are 
sufficiently low, long-term ice stability 
should be maintained (7). Of all the vola- 

\ ,  

tile, ice-like substances in the solar system, 
crvstalline water ice has the lowest vauor 
pressure at these temperatures by several 
orders of magnitude (28). This property, 
plus its high cosmic abundance, makes wa' 
ter ice the most likely material to be cold- 
trapped in Mercury's permanently shad- 
owed regions. Other, less volatile substanc- 
es should also be cold-trapped near Mer- 
cury's poles. However, if the presence of 
these other materials were the only expla- 
nation for the anomalous radar features, 
then it would be difficult to understand whv 
they would only be confined to those re- 
gions where water ice is thermally stable. 
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Biological Weighting Function for the 
lnhi bition of Phytoplankton Photosynthesis 

by Ultraviolet Radiation 

John J. Cullen,* Patrick J. Neale, Michael P. Lesser 
Severe reduction of stratospheric ozone over Antarctica has focused increasing concern 
on the biological effects of ultraviolet-B (UVB) radiation (280 to 320 nanometers). Mea- 
surements of photosynthesis from an experimental system, in which phytoplankton are 
exposed to a broad range of irradiance treatments, are fit to an analytical model to provide 
the spectral biological weighting function that can be used to predict the short-term effects 
of ozone depletion on aquatic photosynthesis. Results show that UVA (320 to 400 na- 
nometers) significantly inhibits the photosynthesis of a marine diatom and a dinoflagellate, 
and that the effects of UVB are even more severe. Application of the model suggests that 
the Antarctic ozone hole might reduce near-surface photosynthesis by 12 to 15 percent, 
but less so at depth. The experimental system makes possible routine estimation of 
spectral weightings for natural phytoplankton. 

Declines in the concentration of strato- 
spheric O3 ( I ) ,  particularly in the Antarctic 
during the austral spring (2), result in more 
UVB radiation reaching the earth's surface 
(3) and the upper part of aquatic photic 
zones (4, 5). Environmental UVB is harm- 
ful to many biological processes (6-9), so 
intense efforts have been made to assess the 
photobiological effects of stratospheric O3 
depletion (6). Biological effects of absorbed 
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ultraviolet radiation (UV) are generally a 
function of wavelength; therefore, they are 
best quantified with a spectral biological 
weighting function (3, 7, 8). The weight- 
ing function, comparable to an action spec- 
trum (7, 9), should accommodate interac- 
tions between (i) the UV that damages 
photosynthetic processes and (ii) longer 
wavelengths, which activate processes that 
counteract the damage (4, 10). That is, 
photoinhibition is likely to be a function of 
both UV and the ratio between UV and 
photosynthetically active radiation (PAR, 
400 to 700 nm) ( I  I). A good model of 
spectral dependence is particularly impor- 
tant for studies of aquatic photosynthesis, 
because both UV and the ratio.UV:PAR 
change with depth in the water column (5) .  

McKown Point, h e s t  Boothbay Harbor, ME 04575. w e  constructed an analytical model of 
*To whom correspondence should be addressed. photosynthesis to describe the interaction 
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of UV and PAR in determining the rate of 
photosynthesis: 

where PB (in grams of carbon per gram of 
chlorophyll per hour) is the rate of photo- 
synthesis normalized to chlorophyll a, P: is 
the maximum attainable rate of photosyn- 
thesis in the absence of photoinhibition, 
EPAR is PAR expressed as irradiance (in 
watts per square meter), and E, is the 
saturation parameter for photosynthesis 
(12, 13). As in other models, PB is the 
product of potential photosynthesis, PSB [ l  
- exp(-EpAR/E,)], and inhibition, 1/(1 + 
E;nh). In this model, however, the inhibi- 
tion term is a function of both UV irradi- 
ance (EUv) and EpAR as expressed in the 
biologically weighted, dimensionless dose 
rate, ETnh, 

400 nrn 

ETnh = GAREPAR + C ~ih)E(h)Ah 
A = 2 8 0  nrn (2) 

where zPAR (in reciprocal watts per square 
meter) is the relative biological efficiencv 
for damage to photosynthesis-by EPAR, €(A) 
is the wavelength-dependent biological ef- 
ficiency for damage to photosynthesis by 
UV (5, 7-9, 1 l ) ,  and E(A) is spectral 
irradiance (in watts per square meter per 
nanometer) (14-1 6). As required for de- 
scribing the variation of the amount of UV 
photoiihibition with depth in the ocean, 
this model predicts PB versus EpAR as a 
function of biological dose rate per unit 
EPAR (1 7) (Fig. 1) and responds directly to 
depth-dependent changes in the Euv:EpAR 
ratio. 

The model provides an analytical con- 
text for estimating the biological parame- 
ters that determine ~hotosvnthetic rate: 
maximum photosynthetic potential, PSB; 
the saturation parameter, E,; the sensitivity 
of photosynthetic systems to supersaturat- 
ing EPAR, zPAP, and the biological weight- 
ing function for inhibition of photosynthesis 
by UV, €(A) (A = 280 to 400 nm). The first 
three parameters are under physiological 
control (1 3, 18, 19), and their variability in 
nature has been described (20). However, 
very little is known about the biological 
weighting function for phytoplankton. We 
therefore developed a procedure for estimat- 
ing the biological weighting function in Eq. 
2 and using it in Eq. 1 to predict photosyn- 
thesis as a function of UV and PAR in 
nature, as influenced by 0, depletion. 

An experimental system (the photoin- 
hibitron) was develo~ed for measuring ~ h o -  " 

tosynthesis of phytoplankton suspensions 
during controlled, quantified exposures to a 
broad range of E,,, and EUv:EpAR (2 1). 
An incubator, modeled after a device for 
measuring action spectra of photosynthesis 

(22), was designed to hold samples of 2 to 3 
ml each in a temperature-controlled block 
(20" + 1°C), exposed to Euv + EpAR from 
below. Irradiance was provided by a 
1000-W xenon illuminator, reflected by a 
mirror upward through a heat trap of circu- 
lating water. Appropriate UV-transparent 
or UV-reflective materials were used. The 
illuminated region was divided into eight 
sections, 5 by 5 cm, holding Schott series 
WG long-pass filters (7), with nominal 

cutoffs at 280, 295,305,320,335,345, and 
365 nm (Fig. 2A). A 400-nm long-pass 
filter was used as a control with essentially 
no UV. Each section contained nine posi- 
tions, which could be modified for selected 
transmittance by insertion of neutral-densi- 
ty perforated nickel screen (Fig. 2B). Re- 
sults of experiments on cultures of a marine 
dinoflagellate and a diatom, when plotted 
as PB/P: versus EpAR for different EUv: 
EPAR ratios (Fig. 3, A and B), were qualita- 

Fig. 1. Pred~ctions of the analyt- 
ical model of photosynthesis 
(Eq. 1) relative photosynthesis 
versus E,,, for different biolog- 
ical dose rates per unit E,,, [as 
labeled, see (17)l. In this exam- 
ple, there is no inh~bition by 
EpAR alone (E,,, = 0 )  

Wavelength (nm) 
0.12 I I 

I > I  Fig. 2. Experimental irradiance regimes in the 
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each photoinhibitron. of the eight (A) sections characteristic (23, 43),  correspond- spectra for 
ing to the different EuV:EpA, ratios associated 
with each long-pass filter. (B) Spectra for the 
nine positions in the WG 305 treatment, modi- 
fied by the insertion of screens, corresponding 
to a large range of E,,, and E,,, but similar 
Euv:EpA,. One low-irradiance spectrum is ob- 
scured. In practice, a maximum of eight posi- 
tions were occupied. (C) Loadings for spectral 
components derived by PCA of spectra shown 
in (A). Linear combinations of these two com- 



tively consistent with the predictions of Eq. 
1 and Fig. 1: the depression of PB at 
supersaturating intensities was exacerbated 
by exposure to shorter wavelengths. 

Quantitative analysis of the experimen- 
tal results required substitution (Eq. 2) for 
Eynh in Eq. 1 and estimates of P,B, EST zPAR, 
and €(A) for UV wavelengths by nonlinear 
regression. The input consisted of -100 
measurements of PB, EPAR, and E(A) for A 
= 286 to 390 nm at 0.5-nm intervals (23). 
We simplified the analysis by applying mul- 
tivariate statistical analvsis to the soectra of 
EU, normalized to EPAR. Briefly, we calcu- 
lated a set of soectral comoonents common 
to all UV treatments in an experiment 
using principal component analysis (PCA) 
(24). These sets of dimensionless spectral 
weightings were statistically defined so that 
any one UV treatment can be approximat- 
ed by adding to or subtracting from the 
mean treatment spectrum a specific amount 
of each spectral component (the compo- 
nent "score"). More than 95% of the vari- 
ance in UV treatment spectra could be 
represented with the first two components 
(Fig. 2C) (25). Instead of having to esti- 
mate directly the dependence of Ey,, on the 
UV spectral irradiance (Eq. 2), which 
would have required estimating a total of 
209 coefficients [€(A), A = 286 to 390 nm 
at 0.5-nm intervals], we estimated the de- 
pendence of Eynh on the two spectral com- 
ponent scores. This procedure required es- 
timation of onlv three coefficients Ih,. the - u. 

mean treatment' effect over the whole irra- 
diance spectrum including both EpAR and 
E(X), and the component effect, hi, where i 
corresponds to components 1, 21. Then, 
the process was reversed: the coefficients h, 
were interpreted as the relative proportions 
of each spectral component required to 
generate a new spectral function describing 
the sensitivitv of ohotosvnthesis to UV. 
that is, the desire2 biolbgical weighting 
function (26). This aoolication of PCA is ~, 

an efficient method for estimating simple, 
smoothly varying spectral responses without 
sacrificing spectral resolution and, unlike 
other methods (7), requires no a priori 
assumptions about spectral shape. 

The PCA method was used to generate a 
biological weighting function for the pho- 
toinhibition of phytoplankton photosyn- 
thesis on the experimental time scale of 45 
min (Fig. 3, C and D). The weighting 
functions from two different laboratory cul- 
tures were similar in shape, as would be 
expected if there was a general biological 
weighting function and if our analyses were 
robust. The dinoflagellate appeared to be 
somewhat more sensitive to UVB than the 
diatom, although the differences were not 
large (27). Normalized to 1.0 at 300 nm 
(Fig. 3E), our weighting function is similar 
to an action spectrum for photoinhibition 

of photosynthesis in the terrestrial plant, lengths of 312 and 355 nm. 
R u m e x  patientia (7). Our weighting function In contrast to a previously determined 
is also quite consistent with broad-band weighting function for the inhibition of 
estimates of relative biological weighting photosynthetic electron transport in vitro 
for photoinhibition in natural Antarctic (30), our phytoplankton weighting func- 
microalgae (28, 29), at least between wave- tion has a steep slope below 300 nm, like 

PhaeodacWlum SR. Prorocentrum micans 
I I I I I I I  - 1.2 

- 
WG 365 . 

- 

1.. WG320 - .... -.._ -._. - 
0 = 0.4 A 

C0.w- '.-.-. WG305 1 * . ;o.:;-.-. -._ - 

L .- . O  
0 ---- 

iii 0.2 - WG 280 - 

d 
0.0 I I I I I I I  

Phaeodactylum sp. Prorocentrum micans 

280 300 320 340 360 380 400 280 300 320 340 360 380 400 

Wavelength (nrn) 

Fig. 3. Relative photosynthesis versus E,,, for 
phytoplankton exposed to different E,,: E,,, 10 
ratios characteristic of each WG-series filter. 
For clarity, only four of the eight spectral treat- 
ments are shown: (A) Phaeodactylum sp., a 
diatom; (6) Prorocentrum micans, a dinoflagel- 2 
late. The lines show a typical photosynthetic 
response for PBversus EPAR in each filter group k 
when two spectral component scores (c,,c,) 2 
are substituted for UV irradiance in Eq. 1 (24- Q 
26). Spectral variat~on between cells in each O.l 

treatment causes some of the scatter around 
these lines. In our model each cell is scored 
and fitted individually, and the total variance 
explained exceeds 93% for both fits. Symbols: 0.01 
WG 365 (A), WG 320 (O), WG 305 (m), and WG 280 300 320 340 360 380 400 
280 (0). (C and D) Statist~cally determined Wavelength (nm) 
biological weighting functions describing the 
experimental inhibition of photosynthesis by UV: Phaeo-dactylum sp. (C) and Prorocentrum micans 
(D). The solid line is the estimated weight and the dotted lines show the estimated 95% confidence 
interval of the estimate (27). Values for 310 to 390 nm are sh~fted, magnified, and repeated, with 
scaling on the r~ght axis. (E) The weighting function for Phaeodactylum (-) compared to 
previously published action spectra, normalized to 1.0 at 300 n m .  (. . .) inhibition of photosynthetic 
electron transport in vitro (30) and (- - -) damage to DNA (31) as presented by Smith et a/. (8); 
(- - - -) differential spectrum of inhibition of photosynthesis in the higher plant Rumexpatientia (7); 
and ( x )  broad-band action spectrum estimates from experiments on inhibition of photosynthesis in 
Antarctic phytoplankton or sea-ice microalgae (28). The estimated 95% confidence interval for 
Phaeodactylum after normalization is approximately +0.015 in the UVA spectral region. 
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that for damage to DNA (31) (Fig. 3E). 
Steeper slopes in the UVB range corre- 
spond to more severe predicted conse- 
quences of 0, depletion (7). However, 
unlike the DNA function and more like 
inhibition of photosynthetic electron trans- 
port in vitro, our phytoplankton weighting 
function indicates a significant photoinhib- 
itory effect well into the UVA; this is 
consistent with observations of photoinhi- 
bition in natural populations of phyto- 
 lankt ton (4, 28, 29, 32). A significant 
response in the UVA, where natural irradi- 
ance greatly exceeds that in the UVB, 

-0.002 
275 300 325 350 375 400 

Wavelength (nm) 

I I I 

No UV 6 - 

UVB DU = 175 - 

I I I 

E m  (W m-2) 

Fig. 4. (A) B~ologically weighted UV dose rate 
[E(X)E(X)AA at 0.5-nm intervals, dimensionless] 
in incident irradiance at local noon (0100 hours 
GMT) for McMurdo Station, Antarctica, on days 
of low atmospheric 0, content [28 October 
1990; Total Ozone Mapping System (TOMS) 
satellite estlmate 1s -1 75 Dobson units (1 DU = 

cm)] and high atmospheric 0, content (1 0 
November 1990; TOMS is -350 DU): spectra 
corresponding to 200 W m-2 Ep,, (34) were 
multiplied by the biological weighting coeffi- 
cients estimated for Phaeodactylum sp. (Fig. 
3C). (B) Trial calculation, using results from 
laboratory experiments on Phaeodactylum sp. 
(Flg. 3C) to predict photosynthesis versus E,,, 
under irradlance regimes in the Antarctic. The 
biological dose rate was calculated from spec- 
tra in (A) using dose rate per unit E,,, over 320 
to 400 nm on 10 November 1990 (UVA only), 
over 286 to 400 nm on 10 November 1990 (UVB 
DU = 350) and over 286 to 400 nm on 28 
October 1990 (UVB DU = 175). 

tends to reduce predictions of the relative 
depression of photosynthesis associated 
with 0, depletion (6, 7). 

In principle, our model can be used to 
assess the effects of 0, depletion on aquatic 
primary production, with the use of direct 
measurements on natural populations of 
phytoplankton (33). We demonstrate the 
procedure with a trial calculation, based on 
measurements of incident spectral irradi- 
ance at McMurdo Station, Antarctica, as 
influenced by the 0, hole (34), and the 
weighting function for a marine diatom 
grown in the laboratory (Fig. 4A). We 
consider the effects of UV on photosynthe- 
sis versus EpAR for high 0, and low 0, 
conditions (Fig. 4B). 

The analysis predicts that damage from 
UVA dominates and produces about 40 to 
50% inhibition of photosynthesis relative 
to that under EpAR alone, during exposures 
of 45 min to near-surface irradiance. Max- 
imum midday EpAR recorded at McMurdo 
during November to December 1990 ranged 
from 225 to 340 W mP2 (34). During 
high-0, conditions, UVB has only a small 
incremental effect; however, under low 0, 
conditions, predicted photosynthetic rates 
were further reduced: 12 to 15% lower than 
under high 0, conditions for EpAR charac- 
teristic of the sea surface in the Antarctic 
during the spring. The predicted effect of 
0, depletion is highly significant even giv- 
en the inherent uncertainty in our esti- 
mates of the weighting coefficients; that is, 
a 12% relative decrease has an estimated 
95% confidence interval of 10 to 15% (35). 
Because both EPAR and E,,:EpAR decrease 
with depth (4, 5 ) ,  modeled relative inhibi- 
tion associated with 0, depletion would be 
much less for the water column as a whole 
than for the sea surface. For example, our 
model predicts that at 4 m, where PAR is 
70% of the surface value, photosynthetic 
rates are incrementally reduced by only 6 to 
7% during low 0, conditions, assuming 
incident irradiance from McMurdo and rel- 
ative spectral attenuation as reported for 
the Bellingshausen Sea (4). Our prediction 
depends on the heuristic assumption that 
the laboratory-derived biological weighting 
function for photoinhibition of photosyn- 
thesis applies for phytoplankton grown in 
the Antarctic under entirely different con- 
ditions. However, only the spectral shape 
of the weighting function need be con- 
served for the estimate of relative inhibition 
associated with 0, depletion to be valid 
(7), and our trial calculation is consistent 
with recently published estimates based on 
direct measurements of phytoplankton pho- 
tosynthesis under varying 0, thickness in 
the Antarctic (36). Support is also provided 
by the comparison between our weighting 
function and other spectra (7, 28, 29). 

Our interpretation of the interaction of 

UVA and UVB differs from that of Smith et 
al. (4): they suggested that UVA played an 
important role in photoprotection through 
a mechanism of UVA-induced photoregu- 
lation of cell responses to UVB. Thus, 
UVA was thought to be responsible for the 
relatively low sensitivity of near-surface 
phytoplankton to enhanced UVB from 0, 
depletion. Our analysis suggests that inci- 
dent UVA in the Antarctic has a net 
damaging effect and accounts for most in- 
hibition of phytoplankton photosynthesis 
by UV under all 0, conditions (Fig. 4). 
Relativelv small near-surface resoonses to 
UVB are consistent with the predictions of 
our biological weighting function. 

Our analytical model and experimental 
system are appropriate for measuring and 
describing the short-term effects of UV 
radiation on aquatic photosynthesis. 
These techniques can be used to make 
direct measurements on natural popula- 
tions of phytoplankton to assess the natu- 
ral variability of the weighting function 
for the inhibition of photosynthesis by 
UV. The effects of UV on photosynthesis 
are a function of the duration as well as of 
the magnitude of exposure (37), and phy- 
toplankton can move vertically through 
the water column at different rates (6, 19, 
38), so the kinetics of photoinhibition and 
recovery should be incorporated into mod- 
els of water column photosynthesis (13, 
37, 39). As progress is made toward de- 
scribing these short-term effects of UV on 
aauatic ohotosvnthesis. the influence of 
u'V on Lphotoprotecti& responses (40), 
survival, growth rate (41), and species 
succession of ~ h ~ t o p l a n k t o n  (42) should 
also be considered. 
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