
occur by this mechanism. Moreover, a 
strand realignment step occurring during 
SSA can lead to the formation of apparent 
gene conversion products, with two copies 
of the repeated sequences, unassociated 
with crossing-over. 
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Interaction of the lmmunosuppressant 
Deoxyspergualin with a  ember-of the Hsp7O 

Family of Heat Shock Proteins 

Steven G. Nadler,*t Mark A. Tepper,* Bernice Schacter,S 
Charles E. Mazzucco 

Deoxyspergualin (DSG) is a potent immunosuppressant whose mechanism of action 
remains unknown. To elucidate its mechanism of action, an intracellular DSG binding 
protein was identified. DSG has now been shown to bind specifically to Hsc70, the 
constitutive or cognate member of the heat shock protein 70 (Hsp70) protein family. The 
members of the Hsp70 family of heat shock proteins are important for many cellular 
processes, including immune responses, and this finding suggests that heat shock proteins 
may represent a class of immunosuppressant binding proteins, or immunophilins, distinct 
from the previously identified cis-trans proline isomerases. DSG may provide a tool for 
understanding the function of heat shock proteins in immunological processes. 

Deoxyspergualin (DSG) is a synthetic an- 
alog of spergualin, a natural product isolat- 
ed from Bacillus laterosporus that possesses 
potent immunosuppressive activity (1 -6). 
In many models of T cell-dependent im- 
mune responses, such as antibody produc- 
tion, delayed-type hypersensitivity, and al- 
lograft rejection, DSG exerts potent immu- 
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nosuppressive effects (2, 3, 7). The mech- 
anism of action of DSG is believed to be 
different from that of the immunosuppres- 
sants cyclosporin A and FK506. Unlike 
cyclosporin A and FK506, DSG does not 
alter the amount of interleukin-2 (IL-2) 
produced in response to T cell activation 
(2, 5), and the time course of inhibition of 
the mixed lymphocyte response for DSG 
differs from that for cyclosporin A (5, 7, 8). 
Furthermore, in contrast to cyclosporin A, 
the effect of DSG on the generation of 
secondary cytotoxic T lymphocytes cannot 
be reversed with exogenous IL-2 (5). In an 
attempt to elucidate the mechanism of ac- 
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tion of DSG, we have isolated a 70-kD 
intracellular DSG binding protein and 
identified this protein as a member of the 
Hsp70 family of heat shock proteins. This 
finding provides evidence for a class of 
immunophilins distinct from the previously 
identified cis-trans proline isomerases (9- 
13) that bind cyclosporin A and FK506. 

Jurkat cell (human T cell) lysates were 
subjected to chromatography on a methoxy 
DSG-Sepharose column (Fig. 1). Methoxy 
DSG (Me-DSG) was used because it is 
more stable to hydrolysis than DSG but still 
possesses similar immunosuppressive activi- 
ty (7, 14). After application of the Jurkat 
cell lysate, the column was washed with a 
low- to high-salt gradient. On the subse- 
quent application of 5 mM DSG, one major 
protein with an apparent molecular mass of 
70 kD was specifically eluted. Only a small 
amount of the 70-kD protein was eluted 
from the column by the polyamines pu- 
trescine and spermidine, which have limit- 
ed structural similarity to DSG and are not 
immunosuppressive (Fig. 2). Furthermore, 
the 70-kD protein did not bind to resin that 
did not contain DSG and was retained on 
the affinity column in the presence of 2 M 
NaCl or 0.5% Nonidet P-40, which sug- 
gests that the protein and affinity matrix 
interact with high affinity. In addition to 
Jurkat cells, we have identified the 70-kD 
protein in THP-1 cells (human mono- 
cytic), calf spleen cells, and thymus cells, as 
well as nonhematopoietic HeLa cells. 

To identify the 70-kD protein, we sub- 
jected the affinity-purified protein to trypsin 
digestion, and the resulting peptides were 
separated by reversed-phase high-perfor- 
mance liquid chromatography (HPLC) 
(15). Several fractions from the HPLC- 
purified tryptic digest were chosen for ami- 
no acid sequencing. Although some frac- 
tions contained more than one peptide, we 
could unambiguously identify the sequences 
of six peptides (1 6). Each of the sequences 
of the DSG binding protein matched iden- 
tically the sequence of the human constitu- 
tive heat shock cognate 70 (Hsc70) heat 
shock protein (15, 16). Although there is 
an 81% sequence identity between the in- 
ducible Hsp70 heat shock protein and 
Hsc70, there are six amino acid differences 
between the peptide sequences of the DSG 
binding protein and inducible Hsp70 (16). 
These data identify the DSG binding pro- 
tein as the constitutive or cognate member 
of the Hsp70 heat shock protein family. 

To confirm the sequencing results, we 
also determined whether monoclonal anti- 
bodies to Hsp70 recognized the affinity- 
purified 70-kD protein (Fig. 3). Three dif- 
ferent monoclonal antibodies, 7.10, 3a3, 
and N27F3-4, that recognize different 
epitopes found on both the constitutive and 
inducible Hsp70 proteins (1 7) each bound 



Flg. 1. SD!S-12.5% polyacrylamide gel of pro- 
tein fractions eluted from the Me-DSG affinity 
column (36). Lane 1, Jurkat cell lysate; lane 2, 
flow-through fraction; lanes 3 to 9, NaCl gradi- 
ent (0.1 5 to 1 M) fractions; lanes 10 and 11, 5 
mM DSG eluate fractions. Aliquots (20 wI) of 
every third 7-ml fraction were loaded on the gel. 
The gel was silver stained with the Gelcode 
system (Pierce). The position of molecular 
mass standards (in kilodaltons) and the 70-kD 
DSG binding protein are indicated on the left 
and right, respectively. 

Fig. 2. Elution of Hsc70 from the Me-DSG 
affinity resin by 5 rnM DSG, 5 rnM MgATP, 5 
mM MgATP plus 5 rnM DSG, 5 rnM putrescine, 
5 mM sperrnidine, or buffer alone. Control 
resin represents activated CH-Sepharose not 
coupled to DSG, with 5 mM DSG used as the 
eluent. Only the 70-kD region of the gel is 
shown; no other proteins were eluted (36). 

Flg. 3. lrnrnunoblot analysis of the 
DSG binding protein (37). Bovine 
brain Hsc70 (lanes 1) or affinity-puri- 
fied DSG binding protein from Jurkat 
cells (lanes 2) were immunoblotted 
with the 7.10 rat monoclonal antibody 
to Hsp70 (Affinity BioReagents, Nes- 
hanic Station, New Jersey), the 3a3 
mouse monoclonal antibody to 
Hsp70 (Affinity BioReagents), the 70 k ~ ,  
N27F34 mouse monoclonal anti- 
body to lisp70 (StressGen, Victoria, 
Canada), the C92F3A-5 mouse 
monoclonal antibody to Hsp72 (heat- 
inducible form) (StressGen), or non- 
immune serum. 

to the DSG binding protein on immune 
blots. A third antibody, which recognizes 
only the inducible Hsp72 protein and not 
Hsc70, did not interact with the DSG 
binding protein (1 8). These results suggest 
that the DSG binding protein is Hsc70. 
However, because the inducible Hsp70 is 
present in cells in much smaller amounts 
than Hsc70, we cannot rule out the possi- 
bility that this form may also bind to the 
Me-DSG a h i t y  resin. 

One of the known functions of heat 
shock proteins is to bind a wide array of 
peptides and proteins (1 9-22), the release 
of which requires the binding and hydroly- 
sis of adenosine triphosphate (ATP) by the 
heat shock protein (2 1,22). ATP appeared 
to elute Hsc70 more effectively from the 
Me-DSG &ty column than DSG, and 
DSG and ATP combined eluted more 
Hsc70 than either compound alone (Fig. 
2). These data suggest that DSG may bind 
to the heat shock protein in a manner 
similar to that of peptides or that an ATP- 
induced conformational change of Hsc70 is 
sufficient to release the protein from the 
athnity resin. Hence, this result provides 
additional functional evidence that the 
DSG binding protein is a heat shock pro- 
tein. Providing further evidence that DSG 
binds Hsc70 in solution, prior incubation of 
bovine Hsc7O with 10 mM DSG (a concen- 
tration similar to that of Me-DSG on the 
Sepharose resin) inhibited the binding of 
the protein to the &ty resin (23). 

Our data show that the Hsc7O constitu- 
tive heat shock protein binds the immuno- 
suppressant DSG. Heat shock proteins ap- 
pear to have several functions (22, 24-26) 
that, in addition to the binding and A n -  
dependent release of a wide variety of pep 
tides and proteins (20, 2 1, 27), include the 
facilitation of the folding and unfolding of 
proteins (20, 24) and the shuttling of pro- 
teins and peptides between various cellular 
organelles (1 9, 24, 25). Our data and other 
studies also suggest that Hsc7O in particular 

7.10 3a3 N27F3-4 C92F3A- 
immune 

plays a role in immune responses (28, 29). 
Immunoregulatory functions in which heat 
shock proteins appear to participate include 
the bindine and stabilization of immuno- 
globulin he& chains before the binding of 
light chains (30) and antigen processing 
and presentation with major histocompati- 
bility complex class I1 molecules (28, 3 1 ) . 
This latter function involves a protein 
tenned PBP 72/74, which appears to be a 
constitutive member of the Hsp7O family 
(28). 

Our results showing the binding of the 
immunosuppressant DSG to a member of 
the Hsp7O family suggest that heat shock 
proteins may represent a new class of im- 
munophilins. Cyclophilin, the cyclosporin 
A binding protein, FK506 binding protein, 
and heat shock proteins all participate in 
the folding of proteins, which suggests that 
a common mechanism of action of immu- 
nosuppressants may include binding to pro- 
tein "foldases." Alternatively, Hsc70 may 
act as a carrier, or "molecular chaperone," 
to translocate DSG to the nucleus or other 
organelles where the drug may elicit its 
immunosuppressive effects. Recently, Yem 
et al. (32) and Tai et al. (33) have demon- 
strated that a protein tenned p59, a puta- 
tive heat shock protein (34), interacts with 
the immunosuppressant FK506. This pro- 
tein is found in a complex with the gluco- 
corticoid receptor, as well as members of 
the Hsp90 and Hsp7O family of heat shock 
proteins (35). Modulating glucocorticoid 
receptor activity by means of the binding of 
immunosuppressants to the associated heat 
shock proteins may also be a mechanism of 
immunosuppression. 
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