
The presence of these pre-atherosclerot- 
ic lesions in the proximal aorta demon- 
strates that a simple lack of apoE is suffi- 
cient to initiate atherogenesis. Although 
different strains of mice exhibit heritable 
differences in the levels of their circulating 
lipids (15), no inbred strains are known to 
develop lesions spontaneously on a normal 
diet. However, they do show significant 
differences in their tendencies to form ath- 
erosclerotic plaques when placed on a high 
fat diet (1 6). Strain C57BLl6 is more sus- 

\ ,  

ceptible to atherogenic diets than others 
that have been tested and strain 12911 is 
moderately susceptible (16). The apoE-de- 
ficient mice we studied here are mainlv F2 
animals that have a combination of'the 
genetic backgrounds of both C57BL16 and 
1290; the precise composition is unique for 
each individual animal (1 7). This genetic 
heterogeneity may cause some variability 
among different individuals in their plasma 
lipoprotein phenotypes and in the likeli- 
hood of their developing arterial lesions. 
However, all 40 mice lacking apoE had 
elevated total plasma cholesterol levels, 
and all six that we have studied histoloai- - 
tally had lesions in their proximal aorta. 
None of these changes were observed in 
normal and heterozygous litter mates. 

The early development of lesions in 
mice lacking apoE makes them of great 
practical value. The combined phenotype 
of the homozygotes (high cholesterol and 
early development of non-lethal lesions) 
provides a baseline against which either 
detrimental or protective genetic and envi- 
ronmental factors can be investigated. 
These mice should also be of value for use 
as an in vivo test system for studies of 
pharmacological or genetic treatments of 
hyperlipidemia. 
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Formation of a Gated Channel by a Ligand-Specific 
Transport Protein in the Bacterial Outer Membrane 
Jeanette M. Rutz, Jun Liu, Jeri Ann Lyons, Joanne Goranson, 

Sandra K. Armstrong, Mark A. Mclntosh, Jimmy B. Feix, 
Phillip E. Klebba* 

The ferric enterobactin receptor (FepA) is a high-affinity ligand-specific transport protein 
in the outer membrane of Gram-negative bacteria. Deletion of the cell-surface ligand- 
binding peptides of FepA generated mutant proteins that were incapable of high-affinity 
uptake but that instead formed nonspecific, passive channels in the outer membrane. 
Unlike native FepA, these pores acted independently of the accessory protein TonB, which 
suggests that FepA is a gated porin and that Ton6 acts as its gatekeeper by facilitating 
the entry of ligands into the FepA channel. The sequence homology among TonB-de- 
pendent proteins suggests that all ligand-specific outer membrane receptors may function 
by this gated-porin mechanism. 

T h e  cell envelope of Gram-negative bac- 
teria contains high-affinity, ligand-specific 
outer membrane proteins that translocate 
substrates into the periplasm. Such trans- 
port systems are multifunctional-a single 
outer membrane protein usually serves as 
the surface receptor for several dissimilar 

J. M. Rutz, J. A. Lyons, J. Goranson, P. E. Klebba, 
Department of Microbioloqy, Medical College of Wis- 

ligands (1)-and multicomponent, requir- 
ing the participation of periplasmic and 
cytoplasmic membrane proteins (2). TonB 
is the most notable of these accessorv Dro- , . 
teins; it resides in the cytoplasmic mem- 
brane but is thought to project across the 
periplasmic space and facilitate the trans- 
port function of outer membrane receptors 
by direct, protein-to-protein interactions 
( 3 )  - . . 

consin, Milwaukee, WI 53226. Ligand-specific receptor proteins have 
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ogy and Immunology, University of Missouri Medical the form of a P barrel (5), which acts as a 
School, Columbia, MO 65212. molecular sieve that equilibrates small mol- 
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Fig. 1. Location of de- 
letion mutations in the 
proposed structure of 
FepA. The predicted 
structural and topolog- 
ical features of FepA 
(7) are shown. Mono- 
clonal antibody bind- 
ing to surface epitopes 
in some regions 
(striped shading) but 
not others (stippled 
shading) blocks ligand 
recognition. Hydrophili 
amino adds are en- 
closed in black boxes. 
Vettical boxes designate 
putative transmembrane 
p strands, and dia- 
monds indicate sites of 
Fepik:F'hoA fusion (22). 
Residues deleted in 
AH261 (lo), AMC (9), 
ARV (7. 9. 10). and 
AA306.(10) &e aka sham; H, M, C, R, and A show in circles mark the locations in FepA that correspond to cleavage of fqoA by Hpa I ,  Mlu I, Cla I, Eco RV, 
and Acc I ,  respectivety, which were used for construction of the deletion mutations. 

Strand 
Residues 

(6). FepA, a ligand-specific, outer mem- 
brane protein dependent on TonB, may 

1 1 2 1 3 1 4 1 ~ 1 6 1 7 1 8 1 9 ) 1 8  ii 12 13 14 15 16 17 18 19 ZB ti 22 23 24 25 26 zi' 28 29 
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also contain a p barrel domain because it 
too has amphiphilic polypeptides that are 
located in the bilayer (7). We have now 
obtained evidence for the existence of a 
nonspecific channel within FepA. Our re- 
sults suggest, however, that unlike known 
porins, the FepA channel is closed at the 
cell surface by loops of hydrophilic peptides 
that selectively bind ligands. 

Metal chelates that are too large to 
ditruse through porins are prototypical sub- 
strates for Tonwependent receptors (3). 
Bacteria secrete catechol or hydroxamate 
iron chelators. called sidero~hores. in re- 
sponse to environmental iron deficiency 
(8). The native Exherichia cdi siderophore, 
enterobactin, forms a hexacoordinate com- 
plex with extracellular Fe3+ that enters the 
cell through FepA (I). The 723-amino 
acid FepA protein contains a surface-ex- 
posed region (bounded by residues 258 and 
339) that binds femc enterobactin and 
colicins B and D (7). By deletion mutagen- 
esis, we have removed a segment of approx- 
imately 140 amino acids (residues 202 to 
340) from this central domain of FepA. 
The deletions eliminate the ligand-binding 
domain of the recevtor but leave its oredict- 
ed transmembranh 8 strands largel; intact 
(Fig. 1); they were created by endonuclease 
digestion .of fepA with Mlu I and Cla I 
(fepAAMC) or Eco RV (fepAARV) (9). 
Two additional deletions, fepAAH261 and 
fepAAA306 (9, lo), that are upstream and 
downstream, respectively, of the region en- 
coding the central ligand-binding domain 
(Figs. 1 and 2) were also analyzed. 

Siderophore uptake experiments suggest 

that the fepAAMC and fepAARV mutations 
transform the ligand-specific, high-ahity 
receptor into a nonspecific channel. Nei- 
ther mutant protein bound femc enterobac-' 
tin (Fig. 3A) or colicins, yet both AMC 
and ARV (the corresponding mutant recep- 
tors) transported femc enterobactin (Fig. 
3B). Unlike wild-type FepA, however, 
which shows high-ahity saturation kinet- 
ics, AMC and ARV required high concen- 
trations of femc enterobactin (>5 pM) to 
function at detectable levels, and their rate 
of femc enterobactin uptake was linearly 
related to its concentration over the range 5 
to 100 pM. This linear relation between 
uptake rate and substrate concentration 
implies passive diffusion across the outer 
membrane that is distinct from the high- 

afhnity transport of femc enterobactin 
through FepA. The hydrophilic channels of 
bacterial porins facilitate the passage of 
small molecules in an identical manner (4, 
6). AH261 and AA306, which were ex- 
pressed from the same plasmid vector at 
comparable amounts (I I )  and contain de- 
letions that are similar in overall size but 
remove fewer surface residues than AMC 
and ARV (Figs. 1 and 2) (9). did not 
mediate femc enterobactin uptake. 

Another distinguishing characteristic of 
porins is their lack of solute specificity (6). 
AMC and ARV exhibited similar nonspec- 
ificity, as evidenced by their transport of 
molecules that are structurally unrelated to 
femc enterobactin. Although FepA neither 
binds nor transports hydroxamate sidero- 

Fig. 2. (A through E) Protein immu- 
noblots of FepA deletion mutants. 
KDF541 (19) (AfepA) harboring 
fepA+ (lanes 1). fepAAH261 (lanes 71 nC 

2). fepAAMC (lanes 3)- fepAARV G 
(lanes 4), or fepAdA306 (lanes 5) I z a 4  
derivatives of pUC18 was grown in 
MOPSs medium (23), and 2 x 10" cells were suspend- 
ed in SDS-PAGE sample buffer, boiled, and subjected 
to electrophoresis (7). The separated proteins were 
transferred to nitrocellulose and immunoblotted with 
I( -- 

MAbs to FepA: 41 (A), 29 (B). 11 (C), 44 (Dl, and 23 (El. 1 2 3 4 5 1 2 3 4 s 
MAb 41 recognizes an epitope within FepA reisudes 
100 to 178 (7); the locations in FepA of the epitopes recognized by the other MAbs are glven in 
Table 2. In (A), bacteria were derived from a typical experiment described in Fig. 3; the immunoblot 
was developed with 1251-labeled protein A and therefore represents quantitatively the expression of 
wild-type and mutant FepA proteins. Although some degradation of AMC and ARV IS apparent 
(starred bands), quantitation by image analysis (Ambis 4000, Ambis Inc.. San Diego. California) 
showed that these products are less than 5% of the total FepA present. The blots shown in (B) 
through (E) were developed with goat antibodies to mouse immunoglobulin and nitroblue tetra- 
zolium-bromochloroindoyl phosphate (7), a more sensitive indicator that ~dentifies the degradation 
products of FepA present in the outer membrane. 
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phores, AMC and ARV mediated the up- 
take of one such molecule, ferrichrome (8) 
(Fig. 3C). As with ferric enterobactin, the 
rate of ferrichrome accumulation was pro- 
portional to its concentration over the 
range 5 to 100 kM. Neither wild-type FepA 
nor AH261 or AA306 promoted the uptake 
of ferrichrome (Fig. 3C). These and other 
data imply that the fepAARV and 
fepAAMC mutations eliminate peptides in 
the ligand-binding domain that normally 

occlude an underlying channel. The un- 
shielding of this pore ostensibly allows pen- 
etration of ferrichrome through the outer 
membrane. Although fepA4H261 and 
fepAAA306 likely also change the architec- 
ture of FepA surface peptides, they appear 
to do so in a manner that does not render 
the receptor permeable to molecules as 
large as ferrichrome (740 daltons) . 

Uptake through the mutant proteins was 
not limited to siderophores; bacteria carry- 

0.0 0.5 1.0 1.5 2.0 59Fe3+- enterobactin (pM) 

59Fe3+- enterobactin (pM) 
157 I 1 5 ,  

0 1'0 50 100 0 10 50 100 
59~e3+- ferrichrome (pM) 59~e3+-ferrichrome (pM) 

Fig. 3. Biochemical properties of FepA deletion mutants. Enterobactin was purified, complexed with 
5gFe3+ ( 7 ) ,  and separated by chromatography on Sephadex LH20 (Pharmacia) (18). KDF541, 
either without plasmid or harboring fepA+ (A), fepAAH261 (+), fepAARV (W), fepAAMC (e), or 
fepAAA306 (x )  derivatives of pUC18 was grown for approximately 8 hours in MOPS medium (23) 
with appropriate antibiotics to the late exponential phase, collected by centrifugation, and washed 
with and suspended in MOPS medium. In each experiment, the expression of FepA and FepA 
mutants was quantitated with MAb 41 and 1251-protein A as described in Figs. 1 and 2. Expression 
was relatively consistent, but as much as 20% variation in the amounts of FepA and the FepA 
mutants was observed from day to day. Expression of AA306 was always -40% of FepA 
expression. Nonspecific background adsorption of siderophores to KDF541 was determined and 
subtracted to generate the plotted values. (A) Binding of ferric enterobactin. Bacteria were shaken 
for 2 hours at 37°C in MOPS medium without glucose so that their energy stores would be depleted. 
All subsequent steps were performed at 0°C (24). Cells were incubated for 30 min with 
59Fe3+-enterobactin at the indicated concentrations, separated by centrifugation, and washed. 
Bacteria-associated radioactivity was determined by scintillation spectroscopy. Data points are 
mean values from three experiments. (B and C) Uptake of siderophores by FepA deletion mutants. 
Initial rates of 5gFe3+-enterobactin (B) and 5gFe3+-ferrichrome (C) transport (24) were measured 
over the concentration range 0.1 to 100 pM. Duplicate experiments were performed with 
energy-depleted bacteria (24) at 0°C; all accumulation of 59Fe3+ was energy dependent. Data 
points are mean values from at least four experiments; lines were drawn by Enzfitter version 1.0 
(Elsevier). Wild-type FepA and FhuA, the ferrichrorne receptor (1) [RWB18-60 (0) is the fepA, fhuA+ 
parent of KDF5411, showed Michaelis-Menten saturation kinetics for ferric enterobactin [Michaelis 
constant (K,) = 0.2 pM; V,, = 25 pmol/min per l o 9  cells] and ferrichrome (K, = 0.5 pM; Vmax = 

12 pmollmin per l o 9  cells) that were comparable to published values (24, 25). Fig. 4 (lower 
right). Uptake of ferrichrome in a tonB genetic background. The initial rates of 5gFe3+-ferrichrome 
transport were determined as in Fig. 3; all uptake was energy dependent. (e) KDF571 (tonB) 
(20)lpAMC (fepAAMC); (W) KDF57llpARV (fepAARV); and (A) KDF571iplTS449 (fepA+) (10). 
Nonspecific background adsorption of siderophore to KDF571 was determined and subtracted 
from the plotted data, which are mean values from three experiments. 

ing fepAAMC and fepAARV were suscepti- 
ble to antibiotics that cannot penetrate the 
OmpF, OmpC, or PhoE porin channels 
(Table 1). For example, AMC and 4RV 
conferred sensitivity to SDS, erythromycin, 
and bacitracin and increased susceptibility 
to novobiocin, chloramphenicol, and ri- 
fampin. AH261 and AA306 did not confer 
susceptibility to the same antibiotics or did 
so only weakly (1 2). 

These data illustrate the characteristic 
phenotype produced by the deletion of 
FepA residues 202 to 340 and support the 
conclusion that the mutant receptors create 
a pore in the outer membrane. Because it 
shows no apparent substrate specificity, the 
FepA channel can be considered a porin 
(4-6). AMC and ARV create an antibiotic 
sensitivity profile that is nearly identical to 
that of ompF deletion mutants that increase 
the effective diameter of the OmpF pore 
(1 3); the exception is the resistance of 
bacteria carrying fepAAMC and fepAARV 
to deoxycholate. Sensitivity to SDS but not 
to deoxycholate is an important contrast, 
for it shows that bacteria that express AMC 
and ARV are not generally susceptible to 
detergents, as are rfa mutants. The resis- 
tance of AMC and ARV to EDTA, which is 
also an antibiotic to rfa strains, reinforces 
this distinction and indicates that expres- 
sion of AMC and ARV does not grossly 
perturb the structure of the outer membrane 
(14). 

To address the possibility that the mu- 
tant FepA proteins contained gross struc- 
tural abnormalities that were responsible for 
their pore-forming phenotype, we evaluat- 
ed their in vivo conformations. Binding 
experiments with monoclonal antibodies 
(MAbs) that recognize known epitopes of 
the receptor (7) indicated that the confor- 
mations of AMC and ARV were similar to 
that of native FepA (Table 2). Epitopes 
both upstream and downstream from cen- 
tral deletions were properly localized (either 
on the cell surface or buried in the bilayer) 
in the outer membranes of bacteria that 
expressed AMC and ARV. However, AMC 
and ARV differed from FepA in that several 
epitopes in the region of amino acids 100 to 
142 (recognized by MAbs 5, 11, and 27), 
which are inaccessible on the surface of 
the wild-type receptor, were detected on 
the cell surface of bacteria that carried 
fepAAMC or fepAARV. The simplest expla- 
nation for this result is that the epitopes in 
question are surface localized in native 
FepA but are sterically shielded by peptides 
that the fepAAMC and fepAARV deletions 
eliminate (1 5). Aside from this alternation, 
the surface topologies of AMC, ARV, and 
AH261 were indistinguishable from that of 
FepA. 

Given the likely existence of a channel 
in FepA, it was of interest to determine the 
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dependence o f  the pore o n  TonB function. fepAAMC efficiently accumulated ferri- 
Bo th  siderophore uptake experiments and chrome in the cytoplasm in an energy- 
antibiotic sensitivity tests indicated that dependent manner, which confirms that 
A M C  and A R V  promoted transport across T o n B  does n o t  participate in the transport 
the outer membrane independently o f  o f  molecules across the cytoplasmic mem- 
T o n B  (Fig. 4 and Table 1). Furthermore, brane (3). 
tonB strains that expressed fepAARV or Because deletions that eliminate the li- 

Table 1. Antibiotic sensitivity of E. coli K-12 strains that express fepA deletion mutations. Tests were 
performed as described (13); bacteria (7, 13, 19, 20) were plated on Luria broth agar, and disks 
that contained antibiotics or other compounds were applied to the agar. Susceptibility was 
evaluated after 12 hours and is expressed as the diameter in millimeters of the zone of growth 
inhibition. The experiment was performed three times with negligible variability ( ~ 5 % ) ;  tabulated 
values are from a single experiment. The amounts of the various compounds tested and their 
molecular masses were as follows: SDS (750 pg; 288 daltons), EDTA (1.5 pg; 292 daltons), 
chloramphenicol (Cm; 30 pg; 323 daltons), deoxycholate (DEO; 750 yg; 392 daltons), gentamycin 
(Gm; 10 pg; 477 daltons), neomycin (Nm; 10 pg; 614 daltons), novobiocin (Nb; 30 pg; 634 daltons), 
erythromycin (Er; 15 pg; 734 daltons), rifampin (Ra; 5 pg; 823 daltons), and bacitracin (B; 30 yg; 
1421 daltons). 

Relevant Compound susceptibility (mm) 
Strain/plasmid 

genotype SDS EDTA Cm DEO Gm Nm Nb Er Ra B 

fepA+, ompF+ 
fepA, ompF+ 
fepA+, ompF+ 
fepAA R V, omp F+ 
fepAA MC, ompF+ 
fepAA HZ6 1, omp F+ 
fepAAA306, ompF+ 

fepA, tonB, ompF+ 
fepA+ , tonB, ompF+ 
fepAA MC, tonB, 

ompF+ 

fepA mutants 
0 0 22 
0 0 22 
0 0 20 

15 0 28 
13 0 26 
0 0 22 
0 0 20 

tonB mutants 
0 0 22 
0 0 20 

15 0 28 

ompF mutants 
0 0 20 

16 0 21 

gand-binding residues o f  FepA circumvent 
the need for TonB, we propose that TonB 
normally acts to facilitate the movement of 
bound ferric enterobactin in to the FepA 
channel. According to this view, TonB func- 
tions as a molecular eatekee~er in the bacte- - 
rial cell envelope, which would be a protein 
that opens the FepA channel to ligands bound 
o n  the cell surface. This conclusion i s  consis- 
tent w i th  existing data o n  TonB structure and 
function (1 6). The mechanism o f  TonB-de- 
pendent outer membrane transport therefore 
involves ligand binding to a surface domain o f  
a receptor, followed by direct or indirect 
interaction o f  that ~ r o t e i n  wi th  TonB. which 
facilitates movement o f  the ligand in to an 
underlying channel and subsequently into the 
periplasm. Such a mechanism generally pre- 
serves the permeability barrier o f  the outer 
membrane but, for example, operates in re- 
sponse to  the interaction o f  FepA w i th  ferric 
enterobactin. The extensive sequence homol- 
ogy among the TonB-dependent proteins o f  
E. coli (3) and other Gram-negative bacteria 
(1 6, 17) suggests that all ligand-specific outer 
membrane transport proteins may function by 
this gated-porin mechanism. 
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mouse immunoglobulin (7), and analyzed on an EPICS Profile II flow ble variability (<5%). Negative samples are designated with a minus. 
cytometer (Coulter). Values in the table are mean fluorescence intensity. 

Mean fluorescence intensity 

Buried epitopes Surface epitopes 

FepA residues: 100-1 42a 100- 444- 495- 1- 200- 258- 31 4- 382- 
142b 475 566 24 227 290 339 400 
- --- 

MAb: 5 7 11 27 38 2 3 57 64 29 33 34 16 44 31 35 37 45 23 24 
Strain/plasmid 

KDF669 - - - - - - -  - - - - - - - - - - - - - 
KDF669/plTS449 - - - - - - -  - - 152 210 183 169 198 207 208 187 210 206 201 
KDF6691pAH261 - - - - - - -  - - 125 223 228 198 226 216 207 203 234 220 225 
KDF669IpAMC 218 - 187 110 - - - - - 150 - - - - - - - - 229 231 
KDF6691pARV 141 - 187 120 - - - - - 129 - - - - - - - - 167 206 
KDF6691pAA306 - - - - 140 - 127 - - - - - - - - - - - -  - 
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DNA Polymerase P and DNA Synthesis in Xenopus 
Oocytes and in a Nuclear Extract 

Timothy M. Jenkins, Jitendra K. Saxena,* Amalendra Kumar,t 
Samuel H. Wilson,t Eric J. Ackerman* 

The identities of the DNA polymerases required for conversion of single-strand (ss) MI3 
DNA to double-strand (ds) MI3 DNA were examined both in injected Xenopus laevis 
oocytes and in an oocyte nuclear extract. Inhibitors and antibodies specific to DNA poly- 
merases a and p were used. In nuclear extracts, inhibition by the antibody to polymerase 
p could be reversed by purified polymerase p. The polymerase p inhibitors, dideoxythy- 
midine triphosphate (ddTTP) and dideoxycytidine triphosphate (ddCTP), also blocked 
DNA synthesis and indicated that polymerase p is involved in the conversion of ssDNA to 
dsDNA. These results also may have particular significance for emerging evidence of an 
ssDNA replication mode in eukaryotic cells. 

Xenopus laevis oocytes and eggs have been 
used to study eukaryotic transcription, 
translation, intracellular transport and lo- 
calization of molecules, DNA replication 
(I), and DNA repair (2, 3). We used 
Xenopus oocytes to study the mechanisms of 
DNA replication. An extensive component 
of genomic DNA replication in Xenopus 
embryos appears to be conversion of long 
segments of ssDNA to semiconservatively 
replicated dsDNA molecules (4). Thus, we 
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used ssMl3 DNA molecules as a model for 
conversion of ssDNA to dsDNA (5)  in , , 

oocytes and in an oocyte nuclear extract. 
This DNA synthesis appears to be depen- 
dent on the activity of DNA polymerase P 
and the activity of DNA polymerase a; 
DNA polymerase 6 or E or both may also be 
required. Polymerase p is a highly con- 
served DNA polymerase in vertebrates ( 6 ) ,  
generally considered to have a role in gap- 
filling DNA synthesis in DNA repair (7). 
Recently, polymerase P was shown to sub- 
stitute for DNA polymerase I in the joining 
of Okazaki fragments during DNA replica- 
tion in Escherichia coli (8). 

Model DNA replication systems that use 
small ds viral DNA molecules (9) do not 
appear to depend on DNA polymerase P 
because the systems can be reconstituted 
with purified proteins in the absence of 
DNA polymerase P. Other replication 
models ( lo),  however, are important to 
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