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Neural Computing in Cancer Drug Development: 
Predicting Mechanism of Action 

John N. Weinstein,* Kurt W. Kohn, Michael R. Grever, 
Vellarkad N. Viswanadhan, Lawrence V. Rubinstein, 
Anne P. Monks, Dominic A. Scudiero, Lester Welch, 

Antonis D. Koutsoukos, August J. Chiausa, Kenneth D. Paull 
Described here are neural networks capable of predicting a drug's mechanism of action 
from its pattern of activity against a panel of 60 malignant cell lines in the National Cancer 
Institute's drug screening program. Given six possible classes of mechanism, the network 
misses the correct category for only 12 out of 141 agents (8.5 percent), whereas linear 
discriminant analysis, a standard statistical technique, misses 20 out of 141 (1 4.2 percent). 
The success of the neural net indicates several things. (i) The cell line response patterns 
are rich in information about mechanism. (ii) Appropriately designed neural, networks can 
make effective use of that information. (iii) Trained networks can be used to classify 
prospectively the more than 10,000 agents per year tested by the screening program. 
Related networks, in combination with classical statistical tools, will help in avariety of ways 
to move new anticancer agents through the pipeline from in vitro studies to clinical ap- 
plication. 

There  are millions of different molecules 
that should be screened for their activity 
against cancer. Some are natural products 
collected from rain forests, oceans, and 
other habitats; some are products of syn- 
thetic organic chemistry. Before 1985, pri- 
mary screening of new compounds was done 
in mice bearing the murine leukemia P388. 
It was not clear, however, that this screen- 
ing would identify agents effective against 

solid tumors, including the common human 
carcinomas (1 ) . An alternative possibility, 
disease-oriented primary screening against 
panels of in vivo tumors, would not have 
been feasible for the very large numbers of 
candidate compounds. These issues moti- 
vated development of the current National 
Cancer Institute (NCI) drug screening, in 
which compounds are tested in culture for 
their ability to inhibit the growth of a panel 
of 60 different human. tumor cell lines (1). 
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that the matches generally related to in vitro 
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biochemical mechanism of action (3). 
Here. we focus on that issue. the mech- 

anism of action: Can patterns of activity 
against cell lines in the panel be used to 
classify new agents by their mechanism of 
action? If so, then the information could be 
used to guide further biochemical studies 
and efforts at rational drug design. It could 
also be used to aid prospectively in deciding 
which of the hundreds of compounds tested 
each week should be selected for more 
detailed (and expensive) testing both in 
vitro and in vivo. To  address this question, 
we have developed neural networks in 
which a drug's pattern of activity in  the cell 
line screen is the input and its mechanism 
of action is to be predicted. 

Neural computing (4, 5) is a relatively 
recent development in the information sci- 
ences, an  outgrowth of artificial intelli- 
gence research in the 1950s and 1960s. 
Onlv in the last few vears. however. have , , 

the 'algorithms advanced to the point a t  
which they would be useful for our current 
application. Neural nets are so named be- 
cause they exhibit certain analogies, at least 
superficially, to the way in  which arrays of 
neurons probably function in biological 
learning and memory. They differ from the 
usual computer programs in that they 
"learn" from a set of examples rather than 
being programmed to get the right answer. 
The information is encoded in  the strength 
of the network's "synaptic" connections. 

Neural networks are rapidly making 
their wav now into various areas of the 
biomedical sciences. They are being applied 
to pattern recognition or decision making 
in diverse fields including nucleic acid se- 
quence analysis (6), protein sequence anal- 
ysis (7), quantitative cytology (B ) ,  diagnos- 
tic imaging (9), neural organization (I 0) , 

Alkyl Topo l Topo ll RNAIDNA DNA Antimitotic 

Chlorambucil 0 0 0 
Methotrexate 0 0 

O Targets 
0 

Chlorambucil 10.951 0.08 -0.07 0.11 -0.01 0.08 output 
Methotrexate -0.08 0.13 0.14 11.071 0.13 -0.03 

(mechanism categories) 

ee to nine hidden layer PEs 

Chlorambucil 0.28 0.31 -0.31 -0.46 . . . . 
Methotrexate 0.93 0.42 1.04 -1.35 . . . . 

Fig. 1. Neural networks with three to nine hidden layer PEs used to classify agents in the NCI cancer 
drug screening program according to their mechanism of action. Sample inputs, outputs, and 
targets for a trained network are shown for two standard agents. Solid and dashed interconnections 
schematically represent different weights in the trained network. The output patterns closely match 
the patterns of targets for the two drugs (note values in boxes), which indicates that their 
mechanisms are correctly predicted. The bias is connected to all hidden layer and output PEs. Topo 
I and I I ,  topoisornerase I and I I  inhibitors, respectively; RNNDNA, RNNDNA antimetabolites; DNA, 
DNA antimetabolites; alkyl, alkylating agent. 

and speech recognition (1 I).  They are also 
being used for clinical diagnosis of condi- 
tions such as lower back pain (12) and 
interstitial lung disease (1 3). 

To  predict mechanisms of action in the 
cancer drug screening program, we devel- 
oped neural networks such as that shown in 
Fig. 1. The fundamental building blocks are 
processing elements (PEs), which can be 
likened to neurons, and weighted connec- 
tions, which can be likened to synapses. 

The network shown has 60 input PEs, one 
for each cell line, and 6 output PEs, one for 
each of six mechanistic categories to be 
considered. The categories selected for this 
study were alkylating agent, topoisomerase I 
inhibitor, topoisomerase I1 inhibitor, RNA/ 
DNA antimetabolite, DNA antimetabolite, 
and antimitotic agent. A seventh category, 
represented implicitly, corresponded to none 
of these. 

Between the inputs and outputs of the 

Table 1. Anticancer agents included in the NCI database. Numbers in parentheses are NSC numbers 

Alkylating agents (35): Asaley (167780), AZQ (182986), BCNU (409962), busulfan (750), carboxyphthalatoplatinum (271674), CBDCA (241240), 
CCNU (79037), CHIP (256927), chlorarnbucil (3088), chlorozotocin (178248), cis-platinum (1 19875), clomesone (338947), Cyanomorpholinodoxo- 
rubicin (357704), cyclodisone (348948), dianhydrogalactitol (132313), fluorodopan (73754), hepsulfarn (329680), hycanthone (142982), rnelphalan 
(8806), methyl CCNU (95441), mitornycin C (26980), mitozolamide (353451), nitrogen mustard (762), PCNU (95466), piperazine alkylator (344007), 
piperazinedione (135758), pipobroman (25154), porfiromycin (56410), spirohydantoin mustard (1 721 12), teroxirone (296934), tetraplatin (363812), 
thio-tepa (6396), triethylenemelarnine (9706), uracil nitrogen mustard (34462), Yoshi-864 (102627). 

Topoisomerase I inhibitors (35): carnptothecin (94600), carnptothecin Na salt (100880), camptothecin derivatives (95382, 107124, 643833, 629971, 
295500, 24991 0, 606985,374028,603071, 176323,295501,601 61 72,6061 73, 61 0458,618939,610457,610459,606499,610456,618939,364830, 
606497, 610458, and 606985, and nine confidential camptothecin derivatives). 

Topoisomerase II Inhibitors (16): doxorubicin (1 231 27), arnonafide (308847), m-AMSA (249992), anthrapyrazole derivative (355644), pyr&zoloacridine 
(366140), bisantrene HCI (337766), daunorubicin (82151), deoxydoxorubicin (267469), mitoxantrone (301 739), menogaril (269148), morpholinodox- 
orubicin (354646), N,N-dibenzyl daunomycin (268242), oxanthrazole (piroxantrone) (349174), rubidazone (164011), VM-26 (122819), VP-16 
(1 41 540) 

RNAIDNA' antimetaboiites (19): L-alanosine (1 53353), 5-azacytidine (1 0281 6), 5-fluorouracil (1 9893), acivicin (1 63501), aminopterin (1 32483), 
arninopterin derivative (184692), aminopterin derivative (134033), an antifol (633713), an antifol (62301 7), Baker's soluble antifol (139105), 
dichloroallyl lawsone (126771), DUP 785 (brequinar) (368390), ftorafur (pro-drug) (148958), 5,6-dihydro-5-azacytidine (264880), methotrexate (740), 
rnethotrexate derivative (174121), N-(phosphonoacety1)-L-aspartate (PALA) (224131), pyrazofurin (143095), trimetrexate (352122). 

DNA antimetaboiites (16): 3-HP (95678), 2'-deoxy-5-fluorouridine (5-FUdR) (27640), 5-HP (107392), alpha-TGDR (71851), aphidicolin glycinate 
(30381 2), ara-C (63878), 5-aza-2'-deoxycytidine (1 2771 6), beta-TGDR (71261), cyclocytidine (1 45668), guanazole (1 895), hydroxyurea (32065), 
inosine glycodialdehyde (1 18994), macbecin 1 1  (330500), pyrazoloimidazole (IMPY) (51 143), thioguanine (752), thiopurine (755). 

Antimitotic agents (13): allocolchicine (406042), an antitubulin (609395), colchicine (757), a colchicine derivative (33410), dolastatin 10 (376128), 
rnaytansine (153858), rhizoxin (332598), taxol (125973), taxol derivative (608832), thiocolchicine (361792), trityl cysteine (83265), vinblastine sulfate 
(49842), vincristine sulfate (67574). 
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Flg. 2. Patterns of activity in the cancer cell line screen, as illustrated by data for four drugs. The first 
two, correctly classified by the network as alkylating agents, have qu~te s~milar patterns. The second 
pair, correctly classified as RNNDNA antimetabolites, is also similar. In some cases, the GI,, values 
were outside of the concentration range tested-hence, the bars were of equal length. CNS, central 
nervous system. 

neural network, we placed one hidden layer 
whose number of PEs can be varied. As 
shown in Fig. 1, each hidden layer PE is 
connected to all inputs and to all outputs; 
the more hidden layer PEs, the more com- 
plex the patterns that can be learned. Using 
a set of drugs whose mechanisms are (puta- 
tivelv) known. we can train the network to 

1 z 

predict mechanism of action. We accom- 
plished this training by iteratively present- 
ing the activity pattern of each agent at the 
input layer, as shown in Fig. 1 for two 
standard drugs, methotrexate and chloram- 
bucil. Each output PE corresponds to a 
category; the target for that output is 1 if 
the drug belongs to the category and 0 if it 
does not. Each of the "svna~tic" connec- , A 

tions between elements has associated with 
it a weight. During training, the outputs are 
compared with their corresponding targets, 
and the error is fed back to update the 

weights (that is, to reinforce or penalize the 
connections) with the use of the "back- 
propagation" algorithm (1 4). By that pro- 
cess, the network outputs come to approx- 
imate the target values (1's and 0's for the 
different classes). The drug is assigned to 
the category with the largest number as its 
output. A higher percentage of correct re- 
sponses might be achieved with the use of a 
Bayesian optimization (that is, taking into 
account the fraction of drugs known a priori 
to be in each category). We chose not to do 
so, however, because the distribution of 
category types in the database used here 
presumably does not reflect that in the 
much larger database of unknown agents to 
which the trained neural network is being 
applied predictively. 

The database (Tables 1 and 2) (15) was 
formulated from a list of standard agents, 
supplemented by additional drugs for which 

Table 2. Cancer cell lines included in the NCI screening program. CNS, central nervous system. 

Non-small cell lung cancer (11): NCI-H23, NCIbH522, A549/ATCC, EKVX, NCI-H226, NCI-H322M, 
NCI-H460, HOP-62, HOP-18, HOP-92, LXFL 529. 

Small cell lung cancer (2): DMS 114 and DMS 273. 
Colon cancer (9): HT29, HCC-2998, HCT-116, SW-620, COLO 205, DLD-1, HCT-15, KM12, . , 

KM20L2. 
Ovarian cancer (6): OVCAR-3, OVCAR-4, OVCAR-5, OVCAR-8, IGROV1, SK-OV-3. 
Leukemia (6): CCRF-CEM, K-562, MOLT-4, HL-6O(TB), RPMI-8226, SR. 
Renal cell carcinoma (9): UO-31, SN12C, A498, CAKI-1, RXF-393, RXF-631, 786-0, ACHN, TK-10. 
Melanoma (9): LOX IMVI, MALME-3M. SK-MEL-2, SK-MEL-5, M14, SK-MEL-28, MIS-MEL, UACC- 

62, UACC-557 
CNS tumor (8) SNB-19, SNB-75, SNB-78, U251, SF-268, SF-295, SF-539, XF 498 

sufficient mechanistic information was 
available. Putative mechanisms of action 
were identified with the use of literature 
sources, structural homologies, and data 
from experiments on mechanism. The re- 
sult was a list of 141 dose-range input 
vectors for a total of 134 agents thought to 
be in one of the categories noted above. For 
seven of the drugs, two different dose ranges 
were kept in the database because it was not 
clear which best reflected the dose-res~onse 
characteristics. In most cases, the data rep- 
resented averages over multiple experi- 
ments run at different times. Certain estab- 
lished agents were excluded if their mech- 
anisms of action were unknown, if they fell 
into categories too small or diffuse to be 
handled easily, or if they were expected to 
require biochemical activation not possible 
in culture (for example, cytoxan, which 
requires activation by hepatic enzymes). 
For the same reasons, not all possible mech- 
anisms of action were included. 

Specification of mechanism is, of course, 
uncertain and to some degree arbitrary. A 
molecule may inhibit cell growth in multiple 
ways or else in ways dependent on cell type, 
drug dose, or culture conditions. To the 
extent that a mechanism could in fact be 
unambiguously assigned, it was also not clear 
that the mechanistic category would corre- 
late well with functional pattern. For all of 
these reasons, and given inevitable experi- 
mental noise in the data, we were unsure at 
the outset whether reasonably predictive 
results could be obtained. However. the 
findings have been unexpectedly good. 

We used as a cell panel the 60 tumor 
lines in the current screening program. 
There were, therefore, 141 input vectors, 
each consisting of 60 numbers derived from 
the dose-response curves in the screening. 
More specifically, we used as input the 
quantities A (Z), defined as 

where GI,, is the concentration of a drug 
required to decrease the growth of a cell 
line by 50% in the standard assay. Assay 
conditions and technical details have been 
described elsewhere (16). The value sub- 
tracted in Eq. 1 for a given drug relates to 
the mean of its cytotoxic potencies over the 
entire panel of cells. Because of this correc- 
tion, simple differences in relative potency 
of the agents are nulled out, and their 
patterns of differential activity are empha- 
sized. Figure 2 shows the cell lines and A 
patterns of four familiar agents: chloram- 
bucil, melphalan, methotrexate, and trime- 
trexate. It is clear that the first two are 
closely related in pattern and different from 
the other pair. In the matrix of 141 x 60 = 
8460 values, there were 604 (7.1%) missing 
values (that is, druglcell combinations not 
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Table 3. Neural net predictions of mechanism 
from NCl's cancer drug screening data. The 
table presents a summary of results as a func- 
tion of the number of hidden layer PEs and in 
comparison to the results from an LDA. For 
comparison with LDA, a two-tailed Pvalue was 
determined from the McNemar test (19). The P 
values for seven and nine hidden layer PEs 
differ because there were a total of ten discrep- 
ancies in the case of seven PEs and 12 dis- 
crepancies in that of nine PEs. 

Hidden Incorrect Correct Comparison 
layer predic- predic- with LDA (P 

PEs (n) tions tions value) 

3 20 (14.2%) 121 1 .OO 
5 13 (9.2%) 128 0.07 
7 12 (8.5%) 129 0.02 
9 12 (8.5%) 129 0.04 

Linear 20 (14.2%) 121 - 

discriminant 
analysis 

tested or else eliminated at the time of the 
experiment for quality control reasons). For 
each missing value, we inserted the mean 
value obtained for the cell line over all 
drugs in the set. Neural networks have a 
property termed "graceful degradation" (5): 
unlike computer algorithms that fail abrupt- 
ly when confronted with missing data val- 
ues or unexpected numbers, neural nets are 
relatively insensitive to such problems be- 
cause information is encoded in distributed 
form throughout the net structure. - 

In principle, a neural network with 
enough hidden layer elements can learn to 
recognize any functional relation between 
inputs and outputs no matter how complex 
and nonlinear it is. Therefore, a large 
enough network could always be trained to 
recognize particulars of the training data set 
and thus assign drugs in it to their proper 
categories with 100% accuracv-even if the - 
net had little or no capacity to predict for 
agents on which it had not been trained. 
The aim, then, is to design a network with 
enough hidden layer elements to capture 
the rich, nonlinear patterns of interaction 
without providing so many hidden layer 
elements (that is, so much plasticity) that 
the network memorizes the training set and 
loses the capacity to generalize. We set up 
our networks (17) using the Neuralworks 
Professional II/PLUS 3861387 program pack- 
age (Neuralware, Inc., Pittsburgh, Pennsyl- 
vania). 

To be sure that we were considering only 
the true predictive power of the network, 
we employed the following statistical cross- 
validation scheme: The drug vectors were 
randomly divided into ten approximately 
equal subsets (14 or 15 in each). The 
networks were then trained on nine-tenths 
of the overall data set and tested for oredic- 
tive power on the other tenth. This proce- 
dure was repeated ten times, each time with 

Table 4. Prediction of mechanism category from cancer drug screening data with the use of a 
back-propagation neural network with seven hidden layer elements. The left column gives the 
putative mechanism; numbers in bold are correct predictions. RID indicates RNNDNA antimetab- 
olites; DNA indicates DNA antimetabolites. Topo I and I I ,  topoisomerase I and I I  inhibitors, 
respectively; Alkyl, alkylating agent. Note that the table reflects results for 141 drug concentration 
vectors representing 134 different drugs. For seven of the drugs, two different dose-response 
profiles were included because it was not clear which best indicated the properties of the agent. 
The total of correct predictions was 129 (91.5%); the total of incorrect predictions was 12 (8.5%). 

Actual Predicted category 

category Alkyl Topo I Topo I I  RID DNA Antimitotic None 

Alkylating 33 0 2 0 0 0 0 
Topo l 0 35 0 0 0 0 0 
Topo I I 1 0 18 0 0 0 0 
RNNDNA 1 0 1 17 0 1 0 
DNA 1 0 1 1 12 1 0 
Antimitotic 1 1 0 0 0 14 0 

a different test subset. Thus, each drug's 
mechanism of action was predicted by a 
network trained on an entirely independent 
set. Somewhat better predictions would be 
expected in the logical limit of this cross- 
validation scheme, in which only one drug 
at a time was left out and the train-test 
cycle was repeated 141 times. 

Table 3 shows the percentage of correct- 
ly predicted categories as a function of the 
number of hidden layer elements included 
in the network. The choice of seven hidden 
PEs appears at least as good as any other. 
Table 4 shows in more detail the correct 
(129) and incorrect (12) choices for a 
network with seven hidden layer elements. 
For comparison, the equivalent linear dis- 
criminant analysis (with equal prior proba- 
bilities) was performed with the use of the 
SAS program set (18) and found to give 20 
wrong classifications. As indicated in Table 
3, a two-tailed P value of 0.02 was calculated 
by the McNemar test (19) for the null 
hypothesis that the apparent difference in 
accuracy between neural network and linear 
discriminant analysis is the result of chance. 

Several of the "mistakes" in classifica- 
tion by the neural net involved DNA anti- 
metabolites. When examined by tech- 
niques of cluster analysis (20), this ap- 
peared to be a highly heterogeneous mix- 
ture of agents not well correlated with 
patterns of growth inhibition in the screen. 
In that sense, the neural network predic- 
tion was not "wrong." 

Dolastatin 10 and maytansine (antimitot- 
ics) were each correctly classified on the basis 
of experiments in the appropriate dose range 
but misclassified with the use of A values from 
a second, apparently inappropriate range 
(whose inclusion in the analysis degraded the 
results obtained). In the case of guanazole, 
there was a tie to two decimal places between 
the output for D N W A  antimetabolite 
(correct) and alkylating agent (incorrect) ; for 
the purpose of Tables 3 and 4, it was scored 
conservatively as incorrect. The other "miss- 

es" were morpholinodoxorubicin, hycan- 
thone, macbecin 11, carboxyphthalatoplati- 
num, 2'-deoxy-5-fluorouridine (5-FUdR) , 
5,6-dihydro-5-azacytidine, ftorafur (a pro- 
drug of 5-fluorouracil), and an antifol (NSC 
633713). 

These findings substantiate the idea that 
patterns of differential growth inhibition in 
the screening panel contain an extraordi- 
nary amount of useful information and also 
that the neural network successfully recog- 
nizes that information. Frankly, we did not 
expect such clear-cut answers. We expect- 
ed, for instance, that more of these agents 
would prove to express mixed mechanisms 
in their patterns of activity. In addition, 
the subcellular distribution of drugs is influ- 
enced by a variety of factors, including 
transmembrane potentials, transmembrane 
pH gradients, structure-selective transport- 
ers, and P-glycoprotein-mediated multidrug 
resistance. These factors can be viewed as 
adding "noise" to the system and may ex- 
plain some of the incorrect classifications. 

Several remaining .issues deserve men- 
tion. First, categories chosen for this work 
may subsume more than one mechanism. 
For example, the alkylating agents include 
nitrogen mustards and platinum complexes 
as well as nitrosoureas, which act by differ- 
ent mechanisms and which exhibit distinc- 
tive spectra of selective effects against var- 
ious types of cells and experimental tumors. 
The neural net analysis of the current cy- 
totoxicity assay, therefore, has the capacity 
to recognize composite groups of distinct 
mechanisms if trained to do so. Clearly, the 
neural networks and databases could be 
designed in many different ways to answer a 
variety of specific questions related, but not 
identical, to those addressed here (2 1 ) . 
Second, our designation of mechanistic cat- 
egories should be considered tentative; in- 
dividual drugs may act by a combination of 
different mechanisms. and the available 
evidence is often inconclusive. Third, 
many close chemical relatives are included 
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among the drugs used in the current analy- 
sis. For example, the topoisomerase I group 
is comprised solely of camptothecin deriva- 
tives, and we do not yet know whether the 
network will recognize chemicallv different - 
subclasses of topoisomerase I agents when 
and if thev are identified. Finallv. mecha- , , 
nisms operating in the assay may not always 
be the most prominent ones in vivo or in 
other cell culture systems. 

As often happens, some of the most 
intriguing clues may come from the data 
that do not fit. For example, the network 
with three hidden layer PEs classified mito- 
mycin and porfiromycin as antimitotics in- 
stead of alkylating agents. (When five or 
more hidden layer PEs were used, the clas- 
sifications were correct.) Interestingly, 
these compounds react in the minor groove 
of DNA, whereas all of the other alkylators 
in the data set react in the major groove. It 
will be important, therefore, to test other 
types of minor groove binders, such as 
tomaymycin, the anthramycins, and the 
pyrrolo- l,4-benzodiazepines. The classifica- 
tion network thus appears to be a good 
source of clues as to the fine structure of 
mechanistic categories, and sometimes 
those clues come from a com~arison of 
optimal and nonoptimal networks. 

We are currently using neural networks 
in the prospective analysis of new com- 
pounds tested by the NCI drug screenihg 
program. It appears that neural computing, 
when combined with other statistical tech- 
niques for pattern recognition and decision 
making, can play a productive role in the 
development of new agents for the treatment 
of such diseases as cancer and acquired im- 
munodeficiency syndrome (AIDS). 
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Age and Duration of Weathering by 40K-40Ar and 
40Arf9Ar Analysis of Potassium-Manganese Oxides 

Paulo M. Vasconcelos, Tim A. Becker, Paul R. Renne, 
George H. Brimhall 

Supergene cryptomelane [K,-,(Mn3+Mn4+),0,, . xH,O] samples from deeply weathered 
pegmatites in southeastern Brazil subjected to 40K-40Ar and 40Ar139Ar analysis yielded 
40K-40Ar dates ranging from 10.1 ? 0.5 to 5.6 ? 0.2 Ma (million years ago). Laser-probe 
40ArP9Ar step-heating of the two most disparate samples yielded plateau dates of 9.94 ? 

0.05 and 5.59 ? 0.1 0 Ma, corresponding, within 2 a, to the 40K-40Ar dates. The results imply 
that deep weathering profiles along the eastern Brazilian margin do not reflect present 
climatic conditions but are the result of a long-term process that was already advanced by 
the late Miocene. Weathering ages predate pulses of continental sedimentation along the 
eastern Brazilian margin and suggest that there was a time lag between weathering and 
erosion processes and sedimentation processes. 

Rates of chemical interaction between 
rocks and the hydrosphere and atmosphere 
at the Earth's surface have only rarely been 
constrained by direct dating techniques (1). 
Radiocarbon residence times, uranium se- 
ries dating ( 2 ) ,  thermoluminescence tech- 
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Berkelky, CA 94720. 
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niques, and more recently ''Be (3, 4), 36Cl 
(5, 6), 26A1 (3), 3He (7, B ) ,  and oxygen 
isotopes (9) have been used successfully in 
special cases to constrain weathering or 
exposure ages. The ages of many weather- 
ing surfaces in tectonically stable cratons, 
however, are beyond the useful limits of 
some of these techniques. Other techniques 
either are inapplicable because of the lack 
of datable overlying volcanic deposits (9) or 
are unreliable because they require assump- 
tions about element immobility after incor- 
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