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Mass-Spectrometric 230Th-234U-238U Dating of the 
Devils Hole Calcite Vein 

Kenneth R. Ludwig,* Kathleen R. Simmons, Barney J. Szabo, 
Isaac J. Winograd, Jurate M. Landwehr, Alan C. Riggs, 

Ray J. Hoffman 
The Devils Hole calcite vein contains a long-term climatic record, but requires accurate 
chronologic control for its interpretation. Mass-spectrometric U-series ages for samples 
from core DH-11 yielded 230Th ages with precisions ranging from less than 1,000 years 
(24  for samples younger than -1 40 ka (thousands of years ago) to less than 50,000 years 
for the oldest samples (-566 ka). The 234U/238U ages could be determined to a precision 
of -20,000 years for all ages. Calcite accumulated continuously from 566 ka until -60 ka 
at an average rate of 0.7 millimeter per 1 O3 years. The precise agreement between replicate 
analyses and the concordance of the 230Th/238U and 234U/238U ages for the oldest samples 
indicate that the DH-11 samples were closed systems and validate the dating technique 
in general. 

Core  DH-I1 of the Devils Hole (DH) 
calcite vein contains a continuous record of 
stable-isotopic variation in Great Basin 
ground water for most of the past several 
hundred thousand years (1). Spectral anal- 
yses of 180 and 13C records of DH-11, as 
well as inferences on timing of glacial- - - 
interglacial transitions ( I ) ,  rely on the ac- 
curacv of the chronometric control. To 
provide this control, we determined mass- 
spectrometric (MS) uranium-series ages (3) 
for 2 1 samples across DH-11, using repli- 
cate analyses to validate estimates of uncer- 
taintv. 

~ d r  each analysis, -300 mg of calcite 
chius were selected for visual ouritv and 

& ,  

freedom from porosity. The chips were ul- 
trasonically cleaned, dissolved in HNO,, 
spiked with 229Th, 233U, and 236U, and 
purified with conventional ion-exchange 
methods. The purified U and Th were 

K R. Ludwig, K. R. Simmons, B J Szabo, A. C Riggs, 
U.S. Geolonlcal Survey, Mail Stop 963, Federal Cen- 
ter, ~ e n v e c  CO 80225. 
I .  J. Winograd and J. M. Landwehr, U.S. Geological 
Survey, National Center, Mail Stop 432, Reston, VA 
22097 --..- 

R. J. Hoffman, U.S Geological S u ~ e y ,  705 Plaza 
Street, Carson City, NV 89701 

*To whom corres~ondence should be addressed 

loaded with colloidal graphite on separate 
Re filaments (3) and analyzed in an auto- 
mated mass spectrometer (4). To evaluate 
both the precision and accuracy of the 
dates. we examined uossible sources of bias 
and external variance in the measurements 
(5) using instrumental checks ( 6 )  and two . , - ~, 

levels of replicate analyses. Thus, we have 
not relied on precision estimates arising 
solely from the internal statistics of the 
mass-spectrometric analyses. 

The orimarv standard for this studv was a 
solutio; of ~rlcambrian uraninite that has 
been shown to be in secular equilibrium 
(7). Analyses of spiked aliquots of this 
standard were uerformed after everv few 
samples and prdvide a test of the reproduc- 
ibility of single analyses. The mean single- 
analysis precision of 230Th/238U for the 
secular-equilibrium standard was 0.24% 
(2u, 12 analyses, no apparent external vari- 
ance) (5, 8). For 234U/235U, a proxy for 
234U/238U, the mean single-analysis preci- 
sion was 0.3 1% (2u, 29 analyses), includ- 
ing a resolvable external error of 0.25% (5. 

u ~, 

9). Therefore, an additional variance cor- 
resoondine to the 0.25% external error was - 
added to the internal variance for each 
234U/235U analysis. The weighted-mean 
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234U/235U ratio of the secular-equilibrium 
standard was 0.0075690 5 0.0000045, 
which corresponds to a 234U half-life of 
245,290 2 140 years (10). This value is in 
reasonable agreement with the half-life of 
244,600 2 700 years determined from AS 
(alpha spectrometric) measurements (I 1 ) . 
For age calculations, we normalized our 
measured 234U/235U and 230Th/235U ratios 
for DH-11 samples relative to the corre- 
sponding ratios measured for the secular- 
equilibrium standard; this approach in ef- 
fect results in 230Th/238U and 234U/238U 
activity ratios. Advantages of this proce- 
dure are that (i) systematic errors from spike 
miscalibration are eliminated, (ii) errors in 
calculated ages arising from uncertainties in 
the 234U and 230Th decay constants are 
demagnified, and (iii) systematic errors aris- 
ing from uncorrected biases in MS measure- 
ment are largely canceled out. 

In addition to replicate analyses of the 
secular-equilibrium standard, we evaluated 
the real precision of the analyses by repli- 
cating most DH-11 sample analyses, start- 
ine from a different set of calcite chins. 
~evsides providing another check on ;he 
validity of the calculated errors for each 
analysis, the replicate analyses are also sen- 
sitive to small-scale, open-system histories 

- 2 1 ' , ' . ' c  
0 100 200 300 4 0 

Distance from vein edge (mm) 

Fig. 1. Agreement between measured isotopic 
ratios for replicate DH-11 sample analyses. The 
y-axis indicates deviation, in percent, from 
weighted-mean value for each sample location. 
Height of vertical lines indicates 20 analytical 
error for each replicate analysis (sample loca- 
tions for each group of replicates expanded in 
x-direction for clarity: each clump of vertical 
lines represents replicate analyses for one 
sample location). Excess scatter of 230Th/23BU 
age replicates of the youngest samples proba- 
bly arises from non-reproducibility of sample 
locations (see text). 

of the samples. Replicate 234U/238U analy- 
ses agreed within analytical error at all 
sample ages. Replicate 230Th/238U analyses 
agreed within analytical error for samples 
that formed before 130 ka, but not for those 
that formed at -60 and -122 ka (Table 1 
and Fig. 1). This excess error arises largely 
from the uncertainty in the locations of 
these samples (-0.7 mm) and the thick- 

nesses of the sample bands (1 and 3 mm, 
respectively). Thus, for samples having an- 
alytical age uncertainties less than or com- 
parable to the errors predicted from the 
uncertainty in sample locations (that is, 
samples younger than -200 ka), the actual 
scatter of replicate 230Th/238U ratios is ex- 
pected to be somewhat greater than analyt- 
ical error. These concerns are taken into 

Table 1. Mass-spectrometric U-series ages (thousands of years) and calculated initial 234U/238U 
activity ratios of individual DH-11 samples versus distance from the free face of the vein (2u errors). 
Calculated using half lives for 230Th of 75,381 r 590 and 234U of 244,600 f 490 years (20) (1 1, 13). 
Median U content of the samples was 0.46 ppm (range = 0.30 to 0.58), median 232Th was 0.33 ppb 
(range <.02 to 16). The 230Th ages are almost unaffected by corrections for initial 230Th, 234U, and 
238U, although a small correction corresponding to an initial 232Th/238U atomic ratio of 3.8 f 2.0 
(230Th, 234U, and 238U are assumed to be in secular equilibrium) was applied. 234U ages of samples 
<385 ka are not shown (all agree with the corresponding 230Th ages) because they are not truly 
independent ages. Uncertainties in 234U ages arise almost entirely from the a0.10 uncertainty in 
initial 234U/238U ratio (Fig. 4). 

Distance 
(mm) 

230Th age 234U age Initial 234U/238Uact Observed 
230Th/232Thact 

Water 

1 .o 

16.0 
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Distance from vein edge (mm) 

Fig. 2. Ages of DH-11 samples (weighted 
means of replicate analyses at each location; 
Table 2) versus distance from the free face of 
the core. Circles with vertical lines are "OTh 
ages and 20 uncertainties (including effect of 
nonreproducibility of sample locations; ex- 
panded in inset for youngest samples); shaded 
area represents "4U ages (each at the same 
sample location as the "OTh ages), and vertical 
dimension of shaded area indicates 234U-age 
uncertainties. 

Table 2. Weighted-mean ages (thousands of 
years) of DH-11 replicates (Table 1) versus 
distance from the free face of the vein. 230Th 
ages are given for locations from 1.0 mm 
through 250.0 mm and 234U ages are given for 
locations from 277.0 mm to 357.5 mm inclusive 
(because 234U ages for these older samples 
are more precise). Weighting and error-propa- 
gation procedure considered uncertainties re- 
sulting from location errors (along the core) of 
each sample and also uncertainties from loca- 
tion errors of replicates within each sample. 
Thus the (20) errors in this table represent the 
total uncertainty of the ages at these locations 
within DH-11. Systematic errors arising from 
half-life uncertainties (14) and biases in the 
HU-1 secular-equilibrium standard (15) are 
small and are not included in age errors. 

Distance 
(mm) 

Weighted 
mean age 

1.0; ' I b o  8 2b0 360 8 4b0 10.4 

Distance from vein edge (mm) 

Fig. 3. Comparison of AS and weighted-mean 
MS analyses of DH-11. Jagged, heavy lines are 
MS analyses (line thickness defined by analyt- 
ical uncertainties at each location); boxes are 
AS analyses (solid, "4U/"8U activity rat~os; 
open, 230Th/"4U activity ratios; height of boxes 
indicates 20 analytical uncertainty). 

3 0 
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Fig. 4. Variation in weighted-mean initial 234U/ 
238U activity ratios versus weighted-mean 230Th 
ages of DH-11 samples (2u uncertainties indi- 
cated by dimensions of ellipses). Horizontal 
dashed lines show approximate limits of varia- 
tion of <350-ka samples, used to calculate 
uncertainties for 234U ages of older samples. 

account in Table 2, wherein the data are 
weighted to account for both analytical and 
sample-location errors, in Figs. 2 to 4, and 
in assigning ages to the and "C time 
series (I).  

The "OTh ages for DH-11 increase 
monotonically and roughly linearly with 
distance in from the free face of the vein 
(Fig. 2 and Tables 1 and 2). All four of the 
samples having "OTh ages >500 ka give 
meaningful ages (based on their consistency 
with the age-distance trend defined by the 
younger samples), and we thus conclude 
that even at an age of more than seven 
half-lives of "OTh, the ages remain reliable. 
The AS analyses done on -5-g samples 
from DH-11, although less precise than the 
MS analyses, are in essential agreement 
(Fig. 3) and validate the earlier AS dates on 
core DH-2 (1 2). Except for the cessation of 
vein growth at -60,000 ka, the age-dis- 
tance trend of DH-11 (Fig. 2) confirms the 

3'0[ Initial 2341JP38U = 2.9 

Fig. 5. "4U-230Th ISO~OPIC evolution of DH-11 
llnes are closed-system isotoplc evolu- 

tion for init~al 234U/238U activity ratios of 2.6 and 
2.9. Open circles are ages on these evolut~on 
curves. Solid circles are activity ratios for DH-  
11 samples (we~ghted mean of replicate anal- 
yses except for youngest sample). Analyt~cal 
errors are generally smaller than symbol slze. 

petrographic observations (1, 2, 12) that 
there were no detectable hiatuses in growth 
during the previous 500,000 years. 

The AS analyses of 6 1,000- to 296,000- 
year-old samples from DH-2 (12) showed 
that, within the precision of the measure- 
ments, initial 234U/238U ratios that were 
back-calculated for these samples are indis- 
tinguishable from a mean value of about 
2.70. Our analyses on DH-11 are consistent 
with this value, but, because of greater 
analytical precision, a secular variation in 
initial Z34U/2'W ratios can be readily re- 
solved (Figs. 4 and 5). Weighted-mean 
initial 2'4U/23W ratios for the younger 
360,000 years of DH-11 (where precision of 
the weighted-mean initial ratios is generally 
better than k0.03) range from 2.651 2 

0.006 at 122.4 ka to 2.817 2 0.007 at 60.3 
ka. Uranium dissolved in present-day Dev- 
ils Hole water has a 234U/2'W activity ratio 
of 2.768 (weighted mean; Table I ) ,  well 
within this range. Back-calculated initial 
2'4UIZ3" activity ratios for the older DH- 
11 samples are necessarily less precise (be- 
cause the "OTh ages are less precise), but 
show no resolvable variation outside the 
limits defined by the younger samples. We 
calculated 234U ages for DH-11 assuming 
that the average initial 234U/Z3W activity 
ratio was 2.75 -+- 0.10 (Table 1 and Fig. 4). 
This value falls near the midpoint of the 
observed range, such that the uncertainty 
encompasses the extremes of the samples 
<360,000 years old. The age uncertainty 
(-20,000 years for all DH-11 samples) 
corresponding to this uncertainty in the 
initial 2'4U/2'W ratio is much larger than 
the 2u uncertainty arising from analytical 
error alone (2000 to 3000 years). More- 
over, because the error arising from the 
uncertain initial Z34U/Z3W ratio is likely to 
be highly correlated for closely spaced sam- 
ples (the time constant for significant fluc- 
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tuations in initial Z34U/238U ratio is ~ roba-  
bly thousands of years), we are unable to 
take advantage of replicate analyses to di- 
minish the Z34U age uncertainties. None- 
theless, Z34U ages are more precise than the 
corresponding Z30Th ages for samples older 
than 450 ka and provide a useful check on 
the validity of the oldest 230Th ages. The 
agreement between 234U ages and 230Th 
ages (Table 1) for the samples that formed 
>350 ka (and especially for those that 
formed >500 ka), independently confirms 
the Z30Th ages, and also shows that the 
growth rate of the vein for its first 100,000 
years was similar to its long-term average 
erowth rate. " 

Overall, the U-series ages form a re- 
markably self-consistent suite of age deter- 
minations. Because this consistency is both 
internal (from replicate samples) and exter- 
nal (from the stability of the overall age- 
distance trend), it seems highly unlikely 
that the dates have been significantly cor- 
rupted by open-system processes such as 
uranium gain or loss or alpha-recoil phe- 
nomena. The apparent ideality of the U-Th 
system in the vein material is probably the 
result of continuous submergence in water 
that showed limited secular variation of its 
physical and chemical properties (2). 
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Regulation of the Amount of Starch in Plant 
Tissues by ADP Glucose Pyrophosphorylase 
David M. Stark, Kurt P. Timmermanlk Gerard F. Barry, 

Jack Preiss, Ganesh M. Kishoret 

Starch, a major storage metabolite in plants, positively affects the agricultural yield of a 
number of crops. Its biosynthetic reactions use adenosine diphosphate glucose (ADPGlc) 
as a substrate; ADPGlc pyrophosphorylase, the enzyme involved in ADPGlc formation, is 
regulated by allosteric effectors. Evidence that this plastidial enzyme catalyzes a rate- 
limiting reaction in starch biosynthesis was derived by expression in plants of a gene that 
encodes a regulatory variant of this enzyme. Allosteric regulation was demonstrated to be 
the major physiological mechanism that controls starch biosynthesis. Thus, plant and 
bacterial systems for starch and glycogen biosynthesis are similar and distinct from yeast 
and mammalian systems, wherein glycogen synthase has been demonstrated to be the 
rate-limiting regulatory step. 

T h e  a- 1,4 glucans (starch and glycogen) 
are the main storage carbohydrates in prac- 
tically all living systems (1). In several 
crops, starch is a major component of the 
harvest and thus directly has an impact on 
vield. Within the last 10 vears. the demand , , 

for starch has dramatically increased for 
both soecialized food and industrial uses 
(2) , primarily as a result of the development 
of high fructose corn syrups and bio-etha- 
nol. A number of specialty starches (such 
as amylose and waxy starch) are being 
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increasingly recognized for their superior 
material and nutritional properties as well 
as biodegradability. Understanding the crit- 
ical components of the plant starch biosyn- 
thetic machinery therefore has a major 
impact on agriculture and industry. We 
have used transgenic ~ l a n t s  to probe the 
rate-limiting step in starch biosynthesis. 

Starch biosynthesis occurs in the plastids 
of plant cells, involving ADPGlc pyrophos- 
~horylase (E.C. 2.7.7.27), starch synthase 
(E.C. 2.4.1.21), and branching enzyme 
(E.C. 2.4.1.18) (1, 3). In view of its 
sensitivity to allosteric effectors, ADPGlc 
pyrophosphorylase (ADPGPP) has been 
suggested to play a ~ivota l  role in ~ l a n t  
starch biosynthesis, as it is in the bacterial 
pathway for glycogen biosynthesis. 

The Escherichia coli ADPGPP, encoded 
by the glgC gene (4),  is a regulated ho- 
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