
ing ASOi-. Cloud processing is relatively 
less efficient in enhancing scattering for 
large ASOi-, in part because for perturba- 
tions through gas-phase conversion only, a 
increases with ASOi- (Table 1). In fact, 
the ratio a(cloud)/a(gas phase) approxi- 
mates unity for large values of ASOi- (Fig. 
3). Nevertheless, considering the calculat- 
ed average sulfate pollution of about 0.5 to 
2 pg rnp3 in the lower atmosphere in a large 
part of the Northern Hemisphere (Fig. 2), 
we conclude that the mean climate forcing 
by sulfate in this part of the globe may be 
about -0.5 to -1.0 W m-', to a large 
extent caused by in-cloud oxidation of an- 
thropogenic SO,. 
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Immuno-PCR: Very Sensitive Antigen Detection by 
Means of Specific Antibody-DNA Conjugates 

Takeshi Sano, Cassandra L. Smith, Charles R. Cantor 
An antigen detection system, termed immuno-polymerase chain reaction (immuno-PCR), 
was developed in which a specific DNA molecule is used as the marker. A streptavidin- 
protein A chimera that possesses tight and specific binding affinity both for biotin and 
immunoglobulin G was used to attach a biotinylated DNA specifically to antigen-mono- 
clonal antibody complexes that had been immobilized on microtiter plate wells. Then, a 
segment of the attached DNA was amplified by PCR. Analysis of the PCR products by 
agarose gel electrophoresis after staining with ethidium bromide allowed as few as 580 
antigen molecules (9.6 x moles) to be readily and reproducibly detected. Direct 
comparison with enzyme-linked immunosorbent assay with the use of a chimera-alkaline 
phosphatase conjugate demonstrates that enhancement (approximately x lo5) in detec- 
tion sensitivity was obtained with the use of immuno-PCR. Given the enormous amplifi-. 
cation capability and specificity of PCR, this immuno-PCR technology has a sensitivity 
greater than any existing antigen detection system and, in principle, could be applied to 
the detection of single antigen molecules. 

Antibody-based detection systems for spe- 
cific antigens are a versatile and powerful 
tool for various molecular and cellular anal- 
yses and clinical diagnostics. The power of 
such systems originates from the consider- 
able specificity of antibodies for their par- 
ticular epitopes. A number of recent anti- 
body technologies, including genetic engi- 
neering of antibody molecules ( I )  and the 
production of catalytic antibodies (2) and 
bispecific antibodies (3), are allowing a 
rapid expansion in the applications of anti- 
bodies. We were interested in further en- 
hancing the sensitivity of antigen detection 
systems. This should facilitate the specific 
detection of rare antigens, which are pre- 
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sent only in very small numbers, and thus 
could expand the application of antibodies 
to a wider variety of biological and nonbi- 
ological systems. 

Polymerase chain reaction (PCR) tech- 
nology (4) has become a powerful tool in 
molecular biology and genetic engineering 
(5). The efficacy of PCR is based on its 
ability to amplify a specific DNA segment 
flanked by a set of primers. The enormous 
amplification capability of PCR allows the 
production of large amounts of specific 
DNA products, which can be detected by 
various methods. The extremely high 
specificity of PCR for a target sequence 
defined by a set of primers should avoid 
the generation of false signals from other 
nucleic acid molecules present in samples. 
We reasoned that the capability of antigen 
detection systems .could be considerably 
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enhanced and potentially broadened by 
coupling to PCR. Following these ideas, 
we have developed an antigen detection 
system, termed immuno-PCR, in which a 
specific antibody-DNA conjugate is used 
to detect antigens. 

*.In immuno-PCR, a linker molecule 
with bispecific binding affinity for DNA 
and antibodies is used to attach a DNA 
molecule (marker) specifically to an anti- 
gen-antibody complex, resulting in the 
formation of a specific antigen-antibody- 
DNA conjugate. The attached marker 
DNA can be amplified by PCR with the 
appropriate primers. The presence of spe- 
cific PCR products demonstrates that 
marker DNA molecules are attached spe- 
cifically to antigen-antibody complexes, 
which indicates the presence of antigen. 
A streptavidin-protein A chimera that we 
recently designed (6) was used as the 
linker. The chimera has two indeoendent 
specific binding abilities; one is to biotin, 
derived from the streptavidin moiety, and 
the other is to the Fc portion of an 
immunoglobulin G (IgG) molecule, de- 
rived from the protein A moiety. This 
bifunctional specificity both for biotin and 
antibody allows the specific conjugation of 
any biotinylated DNA molecule to anti- 
gen-antibody complexes. 

To test the feasibility of tnis concept, we 
immobilized various amounts, of an antigen 
on the surface of microtiter plate wells and 
detected them by immuno-PCR. Bovine 
serum albumin (BSA) was used as the 
antigen because of the availability of pure 
protein and monoclonal antibodies against 
it. The detection procedure used (7) is 
similar to conventional enzyme-linked im- 
munosorbent assay (ELISA) . Instead of an 
enzyme-conjugated secondary antibody di- 
rected against the primary antibody, as in 
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typical ELISA, a biotinylated linear plas- 
mid DNA (pUC19) (8) conjugated to the 
streptavidin-protein A chimera (9, 10) was 
targeted to the antigen-antibody complex- 
es. A segment of the attached marker DNA 
was amplified by PCR with appropriate 
primers (1 I ) ,  and the resulting PCR prod- 
ucts were analyzed by agarose gel electro- 
phoresis after staining with ethidium bro- 
mide (Fig. 1). 

A specific 260-bp PCR product was 
observed in all the lanes that contained 
immobilized BSA (Fig. 1 A), which indi- 

B 
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0 1@ 104 106 10B 10ir 
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Fig. 1. Detection of BSA immobilized on a 
microtiter plate by immuno-PCR. (A) Analysis of 
PCR products by agarose gel electrophoresis. 
A PCR amplification reaction mixture (15 PI) (7, 
11) was separated on 2.0% agarose gels, and 
the DNA was stained with ethidium bromide. 
Lane M, 123-bp ladder (BRL); lane a, positive 
control for PCR with 2 ng of biotinylated pUC19 
(8) added before PCR amplification; lane b, 
negative control for PCR; lanes 10 through 12, 
control (TBS used without BSA in the initial 
immobilization step). Lanes 1 through 9 contain 
PCR amplification reaction mixtures with immo- 
bilized antigen: lane 1,96 fmol; lane 2,9.6 fmol; 
lane 3, 960 amol; lane 4, 96 amol; lane 5, 9.6 
amol; lane 6, 0.96 amol; lane 7, 9.6 x 
mol; lane 8, 9.6 x mol; and lane 9, 9.6 x 

mol. Each lane contained 5.8 x 101°, 5.8 
X lo9, 5.8 X lo8, 5.8 X lo7, 5.8 X lo6, 5.8 X 

lo5, 5.8 x lo4, 5.8 x lo3, and 5.8 x 102 
molecules, respectively (12). (B) Quantitation 
of the 260-bp PCR product. The agarose gel 
shown in (A) was photographed with Polaroid 
665 film, and the negatives were scanned with 
the use of a densitometer (2202 Ultroscan laser 
densitometer, Pharmacia-LKB). The intensity of 
the 260-bp band, represented in arbitrary units, 
is plotted as a function of the molecules of 
antigen. 

cates that the biotinylated pUC19 was 
specifically attached to the antigen-mono- 
clonal antibody complexes by the chime- 
ra. In contrast, almost no 260-bp fragment 
was observed in lanes 10 through 12. - 
which came from wells without immobi- 
lized antigen. Quantitation of the 260-bp 
PCR product (Fig. 1B) demonstrates that 
background PCR signals generated by 
nonspecific binding of the antibody or the 
chimera-pUC19 conjugate were sufficient- 
lv small to allow clear discrimination of 
1;ositive signals from background. This 
also indicates that the specificity of PCR 
amplification is high enough to avoid the 
generation of false signals from other 
DNA molecules present in the wells. Be- 
cause the sequences of a marker DNA and 
its amplified segment are purely arbitrary, 
they can be changed frequently, if needed, 
to prevent deterioration of signal-to-noise 
ratios caused by contamination. 

This result demonstrates the specific 
detection of immobilized antigen by im- 
muno-PCR. The 260-bp fragment was 
clearly observed even with only 580 anti- 
gen molecules (9.6 x lo-'' mol; lane 9 in 
Fig. 1A) (12). Direct comparison with 
ELISA with the use of a chimera-alkaline 
phosphatase conjugate (Fig. 2) demon- 
strated that enhancement (approximately 
x lo5) in detection sensitivity was ob- 
tained with the use of immuno-PCR in- 
stead of ELISA. A consideration of the 
detection limits of typical radioimmunoas- 
says, in which sensitivity is primarily de- 
termined by the specific radioactivity of 
antigens or antibodies used (13),  indicates 
that immuno-PCR is likely to be several 
orders of magnitude more sensitive than 
radioimmunoassays. 

This extremely high sensitivity of im- 
muno-PCR was achieved just with the use 
of agarose gel electrophoresis to detect 

Fig. 2. Detection of BSA (14) im- 2 3 4 
- x -  L % mobilized on a microtiter plate by 2 '  \ -  - ' % lo 

ELISA with the use of antibody @i@i@.e. 
against BSA and a chimera-bio- 4, 4, * C 

. 4 tinylated alkaline phosphatase 
conjugate. The amounts of immobilized BSA in wells 1 through 11 were as follows: well 1, 9.6 nmol; 
well 2, 960 pmol; well 3, 96 pmol; well 4, 9.6 pmol; well 5, 960 fmol; well 6, 96 fmol; well 7, 9.6 fmol; 
well 8, 960 amol; well 9, 96 amok well 10, 9.6 amol; and well 11, 9.6 x 10-l9 mol. Each well 
contained 5.8 x 1015, 5.8 x 1014, 5.8 x 1013, 5.8 x loq2, 5.8 x loll, 5.8 x lolo, 5.8 x lo9, 5.8 x 
lo8, 5.8 x lo7, 5.8 x lo6, and 5.8 x lo5 molecules, respectively (12). Well 12 is the control, where 
TBS without BSA was used in the initial immobilization step. When pnitrophenyl phosphate was 
used as the substrate, color development was observed at 96 amol (5.8 x lo7 molecules) (12) or 
more of immobilized BSA. 

Fig. 3. Effect of a reduced concentration A ~ ~ 

ofthe chimera-pUC19 conjugate on the , 12 
sensitivity of immuno-PCR. (A) Analysis 
of PCR products by agarose gel electro- 
phoresis. A lower concentration (1.4 x 
lo-' mo1/50 PI) of pUC19 conjugated to 
the chimera was applied to the wells, 
whereas all the other conditions re- 
mained the same as those in (7, 11). 
Each lane contains a PCR amplification 
mixture derived from a well that con- 4-260 bp 

tained the same amount of immobilized 
BSA as in Fig. 1A: lane 1,96 fmol; lane 2, 
9.6 fmol; lane 3, 960 amol; lane 4, 96 
amol; lane 5,9.6 amol; lane 6,0.96 amol; 
lane 7, 9.6 x mol; lane 8, 9.6 x 

mol; and lane 9, 9.6 x lo-= mol. 
B - 1.8 

Each lane contained 5.8 x 101°, 5.8 x o 

lo9, 5.8 X 108,5.8 X lo7, 5.8 X lo6, 5.8 a 1.6 

x lo5, 5.8 x lo4, 5.8 x lo3, and 5.8 x g 1.4 
lo2 molecules, respectively (12). Lanes 0 u 3  = 1.2 
10 through 12, control (TBS used without P c 

BSA in the initial immobilization step); M, g ;, 1.0 

123-bp ladder as in Fig. 1A. (B) Quanti- $ 2 0.8 
tation of the 260-bp PCR product shown 2 0 5 2 0.6 
in (A). The procedures were the same as 
in Fig. 1B. The PCR amplification was $- 0.4 

saturated at around 9.6 fmol (5.8 x lo9 5 0.2 
molecules) (12) of immobilized BSA. - 0.0 

0 102 104 108 108 10'0 
Molecules of antigen 
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PCR products. The sensitivity and versa- 
tilitv could be enhanced considerablv with 
the use of better detection methods for 
PCR products. For example, direct incor- 
poration of a label, such as radioisotopes, 
fluorochromes, and enzymes, into PCR 
products with the use of label-conjugated 
primers or nucleotides allows simple ana- 
lytical formats. Alternatively, gel electro- 
phoresis could be used to detect many 
different antigen molecules simultaneous- 
ly, each of which is labeled with a different 
size marker DNA. 

The amount of the 260-bp fragment 
decreased with decreasing amounts of im- 
mobilized antigen from lanes 6 to 9 (Fig. 
IA),  which demonstrates that the PCR 
amplification was not saturated below 0.96 
am01 of BSA. For wells that contained 
more antigen (lanes 1 through 5), the 
PCR amplification was saturated. In prin- 
ciple, quantitation of PCR products below 
saturation should provide an estimate of 
the number of antigens (epitopes) after 
appropriate calibration with known num- 
bers of antigen molecules. When more 
dilute chimera-pUC19 conjugates were 
used, saturation of PCR amplification oc- 
curred with larger amounts of the immo- 
bilized antigen (Fig. 3) .  Thus, one can 
control the sensitivity of the system by 
varying the concentration of the conju- 
gate. Other key factors, such as the con- 
centration of antibody, the number of 
PCR amplification cycles, and the detec- 
tion method for PCR products, can also be 
used to control the overall sensitivity of 
the svstem. 

In principle, the extremely high sensi- 
tivitv of immuno-PCR should enable this 
technology to be applied to the detection of 
single antigen molecules; no method is 
currently available for this. The sensitivity 
of current antigen detection svstems can be " 
enhanced by at least a few orders of magni- 
tude simply by the introduction of PCR. 
The controllable sensitivity and the simple 
procedure of immuno-PCR should allow 
the development of fully automated assay 
systems without loss in sensitivity, with a 
great potential promise for applications in 
clinical diagnostics. 
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