

he wall chart highlights advances in genetic and physical mapping of the X chromosome, which has been the center of considerable excitement in mapping of disease-related genes. At the far left, the genetic linkage map is a composite of information presented at the Third X Chromosome Workshop (Naples, Italy, April 3-4, 1992) by P. Fain and D. Barker, information from the CEPH database, and published regional maps. The linkage map is estimated to be 200 cM in length. The markers shown here (and on the physical map) were selected to be representative of the information currently available. The pseudoautosomal region is indicated in grey. Genetic distances are approximations and, in some cases, represent averages from different sources. For the anonymous markers, D numbers have been abbreviated as S for X-linked segments, and YS for pseudoautosomal loci. Highly informative markers are indicated (asterisk). Diagonal lines relate the genetic linkage map to the cytogenetic banding pattern. The right half of the chromosome image is a rendering of the X chromosome as viewed by scanning electron microscopy.

The physical map is a summary of information presented at the Third X Chromosome Workshop and maps that are published or in press. The diagram indicates regions that have been mapped as YAC contigs (thick box), regions where YAC contigs have not been generated but where distances can be estimated by PFGE maps (thin box), and regions where no information is available (line). The only exact distances are represented by the sizes of the YAC contigs. When neither YAC contigs nor PFGE information was available, distances were estimated on the basis of the maximum amount of DNA predicted to be in the particular band. The location and relative order of representative genes [(black) if cloned; (blue) if uncloned] and anonymous markers with respect to the diagram are shown in the columns next to the YAC contigs. Brackets indicate the limits of uncertainty in localizing the adjacent genes or markers or an area in which the relative order is uncertain. Some anonymous markers and genes were categorized as highly informative (asterisk) or as reference markers (red); all genes shown as reference markers on the chart have been

Linkage Map

Science GENOME N

nkage Map

Physical

SCIENCE JE MAPS III

SIII

Deletions and breakpoints

S325 S171 S347 S356 S56 S56 S346 S447 S72 S169 S26 S232 S121 S233 S165 S540 S95 S110 Y51x* Y52x Y55x S214 Y512x S112 S3* S73 S118 S96*

T3 IDX1

> S366 5442 S454*

S265 S178*

S350 S362 Disease-Related Genes on X

Region	Symbol	Disease	Nearest markers or name and function of protein
EYE			
p22.3-22.2	OA1	Ocular albinism, Nettleship-Falls type	S237 - S143, OAI - S16 (~10 cM)
p22.2-p22.1	RS	Retinoschisis	S207, S43 - <i>RS</i> - S274 (6 cM)
p22.1	NHS	Nance-Horan cataract-dental syndrome	S43 - <i>NHS</i> - S67
p21.1	RP3	Retinitis pigmentosa-3	<i>CYBB - RP3 -</i> BB deletion breakpoint (160 kb)
p11.4	NDP	Norrie disease (retinal dysplasia and ocular degeneration)	Candidate cDNA cloned
p11.3	CSNB1	Congenital stationary night blindness	MAOA - CSNB1 - S255
p11.3	RP2	Retinitis pigmentosa-2	S7 - RP2 - S426
p11-q11	AIED	Aland island eye disease (ocular albinism, Forsius-Eriksson type)	Linked to S255
q21.2-q21.31	CHM	Choroideremia	Possible G-protein regulator
q21.3-q22	MGC1	Megalocornea, X-linked	Linked to S94, S87
q28	MYP1	Myopia-1, X-linked; Bornholm eye disease	Linked to F8C, S52
q28	RCP, GCP	Blue cone monochromacy; deutan or protan color blindness	Red and green cone pigments (opsins)
HEMATOL		ID IMMUNODEFICIENCIES	
p21.1	XK	McLeod phenotype (acanthocytosis and absence of K [×] red blood cell antigen)	S709 - <i>XK - CYBB</i> (400 kb)
p21.1	CYBB	Chronic granulomatous disease	ß subunit of cytochrome b
p11.3-p11.23	B PFC	Properdin deficiency, X-linked	Properdin P factor, complement
p11.3-p11.22	WAS	Wiskott-Aldrich syndrome (immunodeficiency and thrombocytopenia)	<i>TIMP - WAS</i> , S255 - S146 (1 cM)
p11.21	ALAS2	Anemia, sideroblastic/hypochromic	Erythroid δ aminolevulinate synthase
q13.3	PGK1	Hemolytic anemia due to PGK deficiency	Phosphoglycerate kinase
q13.1-q13.3	SCIDX1	Severe combined immunodeficiency, X-linked	S132 - <i>SCIDX1, PGK1</i> - S447 (4 cM)
q21.3-q22	AGMX1	X-linked agammaglobulinemia	S366, S442 - <i>AGMX1</i> , S178, S265 - S94 (~5 cM)
q24-q27	HIGM1	X-linked immunodeficiency with hyper-lgM	Linked to S42
q25	LYP	Lymphoproliferative syndrome, X-linked	S37 - <i>LYP</i> - S42
q27.1	F9	Hemophilia B	Coagulation factor IX

YAC contigs have not been generated but where distances can be estimated by PFGE maps (thin box), and regions where no information is available (line). The only exact distances are represented by the sizes of the YAC contigs. When neither YAC contigs nor PFGE information was available, distances were estimated on the basis of the maximum amount of DNA predicted to be in the particular band. The location and relative order of representative genes [(black) if cloned; (blue) if uncloned] and anonymous markers with respect to the diagram are shown in the columns next to the YAC contigs. Brackets indicate the limits of uncertainty in localizing the adjacent genes or markers or an area in which the relative order is uncertain. Some anonymous markers and genes were categorized as highly informative (asterisk) or as reference markers (red); all genes shown as reference markers on the chart have been cloned. At the far right, vertical and horizontal lines indicate deletion intervals and translocation breakpoints or other breakpoints, respectively, that were important historically in assembling the map and in isolating disease genes. For example, the deletion in patient BB was instrumental in isolating the genes for Duchenne muscular dystrophy and chronic granulomatous disease and is being used to isolate a gene for retinitis pigmentosa-3.

The table of disease-related genes on the X is based on the report of the Eleventh International Workshop on Human Gene Mapping and information presented at the Third X Chromosome Workshop. For characterized genes, which have been cloned and sequenced, the name or function of the encoded protein is listed. For the remaining genes, flanking markers (in order pter - disease locus - qter) are shown and the size of the segment in which the gene has been mapped. Commas indicate closely linked markers within the interval delineated by the flanking markers; the orientation of these markers with respect to the disease gene is arbitrary. The categorization of diseases into groups was arbitrary for the diseases that are associated with multiple abnormalities. Furthermore, because of space constraints, some rare diseases have been omitted for which mapping information was derived from a single family or was imprecise. This is especially true for X-linked mental retardation syndromes.

The X chromosome is expected to contain about 160,000 kb (160 Mb) of DNA and sequencing of those nucleotides has barely begun. Nonredundant sequences covering about 400 kb have been determined and deposited in databases (GenBank and EMBL). The longest continuous stretch of 56.7 kb corresponds to the hypoxanthine phosphoribosyl transferase gene (*HPRT*). Other long sequences include the coaguiation factor IX gene (*F9*; 38.1 kb), a region including the glucose-6-phosphate dehydrogenase gene (*G6PD*; 20.1 kb), and two sequences from the enormous dystrophin gene (*DMD*; 14.0 kb of complementary DNA sequence and 14.9 kb of genomic sequence around exon 44).

Further information can be found in the accompanying article (J.-L. Mandel *et al.*) in the 2 October, 1992 issue of *Science*.

575		11	p21.1	CYBB	Chronic granulomatous disease	ß subunit of cytochrome b
			p11.3-p11.2			Properdin P factor, complement
S366		1	p11.3-p11.2			<i>TIMP - WAS</i> , S255 - S146 (1 cM)
_S454*			p11.21	ALAS2	, , ,	Erythroid δ aminolevulinate synthase
S265 S178*			q13.3	PGK1	Hemolytic anemia due to PGK deficiency	Phosphoglycerate kinase
			q13.1-q13.3	SCIDX1	Severe combined immunodeficiency, X-linked	S132 - <i>SCIDX1, PGK1</i> - S447 (4 cM)
S88 S101			q21.3-q22	AGMX1	X-linked agammaglobulinemia	S366, S442 - <i>AGMX1</i> , S178, S265 - S94 (~5 cM)
_S17			q24-q27	HIGM1	X-linked immunodeficiency with hyper-IgM	Linked to S42
Γ			q25	LYP	Lymphoproliferative syndrome, X-linked	S37 - <i>LYP</i> - S42
S350 S362			q27.1	F9	Hemophilia B	Coagulation factor IX
L S287			q28	G6PD	G6PD deficiency; favism	Glucose-6-phosphate dehydrogenase
			q28	F8C	Hemophilia A	Coagulation factor VIII
			METABOL		ENDOCRINE	
			p22.2-p22.1	HYP	Hereditary hypophosphatemia	S43, S207 - HYP - S274
Г	-		p22.2-p22.1	XLG (PHKA2)	X-linked liver glycogenosis	Liver isoform of phosphorylase kinase $\boldsymbol{\alpha}$ subunit
S11			p22.2-p22.1	PDHA1	Pyruvate dehydrogenase deficiency	Pyruvate dehydrogenase, E1α subunit
S129			p21.3-p21.2	AHC	Primary adrenal hypoplasia	S28 - AHC - S708
			p21.3-p21.2	GK	Glycerol kinase deficiency	S708 - <i>GK</i> - 3' DMD (420 kb)
			p21.1	OTC	Ornithine transcarbamylase deficiency	Ornithine transcarbamylase
S19			q22	GLA	Fabry disease	α galactosidase
			q22-q24	PRPS1	Phosphoribosylpyrophosphate synthetase-related gout	Phosphoribosylpyrophosphate synthetase I
S37			q26-q27	HPT	Hypoparathyroidism, X-linked	S105 - HPT - S98
			q28	IDS	Hunter syndrome, Mucopolysaccharidosis II	Iduronate 2-sulfatase
	1997 - S.		q28	DIR	Nephrogenic diabetes insipidus, vasopressin V2 receptor deficiency	S52 - <i>DIR - G6PD</i> (1.5 Mb)
			NEUROLOG	GIC AND	NEUROMUSCULAR	
Г			p22.2-p22.1	CMTX2	Charcot-Marie-Tooth neuropathy, X-linked recessive	Linked to S143, S16 and S43 (a second locus may be in Xq26)
S42 S12 S100			p21.2	DMD, BMD	Muscular dystrophy, Duchenne and Becker types	Dystrophin
L			q11.2-q12	SBMA (AR)	Spino-bulbal muscular atrophy	Androgen receptor
			q13.3	MNK	Menkes disease (cerebral degeneration, kinky hair, and abnormal copper transport)	S56 - <i>MNK - PGK1</i> (800 kb)
			q12-q21.1	CMTX1	Charcot-Marie-Tooth neuropathy, X-linked dominant	AR - CMTX1 - YS1X
S79			q13.1-q13.3	DYT3	Torsion dystonia-parkinsonism, filipino type	S159 - <i>DYT3</i> , S106 - S56
S86 S10			<u>q21-q22</u>	SPG2		Linked to S17, S287 (may be heterogeneous)
S177 S144E			q22	PLP	Pelizaeus-Merzbacher syndrome (demyelinating disease)	Myelin proteolipid
S99 S64 S155 S51			q26-q27		Borjeson-Forssman-Lehmann syndrome (mental retardation with gynecomastia and facial features)	Linked to S51
S51 S102*	- h		q26.1-q26.2		HPRT-related gout	Hypoxanthine phosphoribosyl transferase
			q27.3	FRAXA	Fragile X mental retardation	FMR1 protein of unknown function

R6A

FLS

The X chromosome is expected to contain about 160,000 kb (160 Mb) of DNA and sequencing of those nucleotides has barely begun. Nonredundant sequences covering about 400 kb have been determined and deposited in databases (GenBank and EMBL). The longest continuous stretch of 56.7 kb corresponds to the hypoxanthine phosphoribosyl transferase gene (*HPRT*). Other long sequences include the coaguiation factor IX gene (*F9*; 38.1 kb), a region including the glucose-6-phosphate dehydrogenase gene (*G6PD*; 20.1 kb), and two sequences from the enormous dystrophin gene (*DMD*; 14.0 kb of complementary DNA sequence and 14.9 kb of genomic sequence around exon 44).

Further information can be found in the accompanying article (J.-L. Mandel *et al.*) in the 2 October, 1992 issue of *Science*.

Glossary

Anonymous marker: a locus of unknown gene content.

Complementary DNA (cDNA): DNA that has been made by reverse transcription from RNA.

Contig: a set of overlapping pieces of DNA that span an uninterrupted stretch of the genome.

D number: a number assigned by the DNA Committee of a Human Gene Mapping Workshop to identify a piece of DNA that has been localized to a chromosome but that has not been characterized with respect to gene content.

Genetic linkage map: a map that shows the relative position of loci on the basis of the frequency of recombination events. Units are in centimorgans (cM) where, over small distances, 1 cM is equivalent to a 1% chance of recombination.

Informative marker: a polymorphic marker that shows sufficient variation in the population that it can be used to detect differences between individuals at a high frequency. The frequency can be expressed as the heterozygosity index or HET. Highly informative markers shown on the chart are very polymorphic, multi-allelic markers (HET frequently ≥ 0.7) with sequence variations that can usually be detected by PCR.

Physical map: a map in which distances between landmarks such as clones, restriction endonuclease sites, or specific loci are expressed in bases of DNA.

Polymerase chain reaction (PCR): a technique that involves repeated cycles of DNA denaturation, renaturation with short lengths of DNA (primers) separated by up to 4 kb, and polymerase-mediated replication. This results in an exponential increase in the number of copies of the sequence between the primers.

Debug out his mention a locus of which there is

Advances in Human Gene

ces in Human Gene Mapping

				(AR)		
			q13.3	MNK	Menkes disease (cerebral degeneration, kinky hair, and abnormal copper transport)	S56 - <i>MNK - PGK1</i> (800 kb)
			q12-q21.1	CMTX1	Charcot-Marie-Tooth neuropathy, X-linked dominant	AR - CMTX1 - YS1X
	S79		q13.1-q13.3	DYT3	Torsion dystonia-parkinsonism, filipino type	S159 - <i>DYT3</i> , S106 - S56
	S86 S10		<u>q21-q22</u>	SPG2	Spastic paraplegia, X-linked, uncomplicated	Linked to S17, S287 (may be heterogeneous)
	S177 S144E		q22	PLP	Pelizaeus-Merzbacher syndrome (demyelinating disease)	Myelin proteolipid
FLS	S99 S64 S155 <mark>S51</mark>		q26-q27	BFLS	Borjeson-Forssman-Lehmann syndrome (mental retardation with gynecomastia and facial features)	Linked to S51
	S102*		q26.1-q26.2	HPRT	Lesch-Nyhan syndrome; HPRT-related gout	Hypoxanthine phosphoribosyl transferase
			q27.3	FRAXA	Fragile X mental retardation	FMR1 protein of unknown function
	S403		q28	ALD	Adrenoleukodystrophy, Adrenomyeloneuropathy	S52 - ALD - telomere
	S105		q28	EMD	Emery-Dreifuss muscular dystrophy	S52 - EMD - F8C (3 cM)
	S152 S119		q28	HSAS	Hydrocephalus, X-linked	S52 - HSAS - telomere
	S259		q28	MASA	MASA syndrome (complicated spastic paraplegia, may be allelic to HSAS)	Linked to S52, F8C
	S98 S312		q28	MTM1	Myotubular myopathy, X-linked	S304 - MTM1 - S52
			q28	BTHS (EFE2)	Barth syndrome (cardioskeletal myopathy and neutropenia)	S305, S374 - EFE2 - telomere
	S292* S369		MISCELLA	NEOUS		
	S297*		p22.3	CDPX1	Chondrodysplasia punctata, X-linked recessive	PABX - CDPX1 - DX30F1/4 (3 Mb)
	S181		p22.3	STS	X-linked ichthyosis	Steroid sulfatase (microsomal)
			p22.3	KAL	Kallmann syndrome	Possible adhesion molecule involved in neuronal migration
	S533		p22.3-p22.2	AMELX	Amelogenesis imperfecta	Amelogenin
	S548* S532 S296	— !	p22.2-p21.3	KFSD	Keratosis follicularis spinulosa decalvans	S16 - S41, <i>KFSD</i> - S28 (~20 cM)
	S295 S185		p22.2-p22.1	CLS	Coffin-Lowry syndrome (mental retardation and skeletal malformations)	S207, S43 - <i>CLS</i> - S274 (6 cM)
	S29		p22.2-p21.3	SEDL	Spondyloepiphyseal dysplasia tarda	Linked to S41, S92
	S49 S341		p11.21	IP1	Incontinentia pigmenti-1, sporadic type	S323 - <i>IP1</i> - S14 - <i>IP1</i> - Z1
	S334 S304		q11.2-q12	AR	Testicular feminization	Androgen receptor
	S258 S374		q12-13.1	EDA	Hypohidrotic ectodermal dysplasia	S339 - <i>EDA</i> , S732 - S453 (1 cM)
	S256		q21.1	DFN3	Conductive deafness with stapes fixation	S26 - DFN3 - S232
A3*	S175		q21.3-q22	CPX	Cleft palate, X-linked	PGK1 - <i>CPX</i> - S17
иН_	\$331 \$52* _\$15		q22	COL4A5	Alport syndrome (nephritis and deafness)	$\alpha 5$ chain of collagen IV
CP	S80 S439		q25-q26.1	OCRL	Lowe oculocerebrorenal syndrome	Candidate cDNA cloned
	S115 YS64 YS61 Tel Bam 3.4		q25-q26	ADFN	Albinism-deafness syndrome	S37 - ADFN - F9
	YS61 Tel Bam 3.4		q28	IP2	Incontinentia pigmenti-2, familial, male-lethal type	Linked to S52, <i>F8C</i> ; may be heterogeneous

ed gene 🛛 🖉 - YAC contig

ns and breakpoints

GENOME MAPS III

Barbara R. Jasny, *Science* coordinator Authors The X Chromosome the heterozygosity index or HET. Highly informative markers shown on the chart are very polymorphic, multi-allelic markers (HET frequently \geq 0.7) with sequence variations that can usually be detected by PCR.

Physical map: a map in which distances between landmarks such as clones, restriction endonuclease sites, or specific loci are expressed in bases of DNA.

Polymerase chain reaction (PCR): a technique that involves repeated cycles of DNA denaturation, renaturation with short lengths of DNA (primers) separated by up to 4 kb, and polymerase-mediated replication. This results in an exponential increase in the number of copies of the sequence between the primers.

Polymorphic marker: a locus at which there is normal sequence variation within the population that is inherited and occurs with a frequency of >1%.

Pseudoautosomal region: a region of homology between the X and Y chromosomes where meiotic pairing and reciprocal exchanges occur.

Pulsed field gel electrophoresis (PFGE): a method of separating large fragments of DNA that relies on application of pulses of electrical current at different angles to a mixture of DNAs in a gel.

Reference marker: an informative marker whose position relative to other markers has been unambiguously determined by genetic or physical mapping techniques.

Sequence tagged site (STS): a short DNA sequence, readily located and amplified by PCR techniques, that uniquely identifies a physical genomic location.

Translocation: the transfer of a chromosomal region to another chromosome by abnormal breakage and rejoining.

YAC (Yeast artificial chromosome): a cloning vector in which sections of yeast chromosomes needed for initiation of DNA synthesis and stability are used to replicate large (>100 kb) pieces of DNA.

Gene Assembler[®] 4 Primers

- Application Note 910: FluorePrime™
- Application Note 911: Primer walking

Chromosome	1	2	3
Genes Mapped Disease-related	247 55	138 24	85 24
Markers Total Polymorphic HET >0.7	466 197 24	266 121 14	1351 442 14
STS markers Total Polymorphic	63 44	66 36	93 45
Number of sequenced loci Number of sequences	144 734	92 515	52 263
Kilobases of sequence	760	867	204

he table describes the state of progess of human genome 1991 Science wall chart, 214 new genes and 806 new pol sequence known to be mapped is now more than 10.3 overlapping sequences).

The number of disease-related genes was provided by Di Polymorphic markers that have a heterozygosity index (HI

- ALF™ DNA Sequencer • Application Note 909: Bidirectional solid phase sequencing
- Application Note 913: Dynamic point mutations

 Application SSCP: a simplified to ex
Application SSCP: a rapitechnique as

Advances in Human Gene

romosome	1	2	3	4	5	6	7	8	9	10	11	12	
Genes Mapped se-related	247 55	138 24	85 24	99 25	92 23	131 27	132 25	64 22	77 26	79 15	154 46	136 23	
Markers Total lymorphic HET >0.7	466 197 24	266 121 14	1351 442 14	495 179 19	491 242 28	396 185 17	608 226 12	308 178 12	242 105 34	263 116 11	1059 320 23	218 82 7	
S markers Total lymorphic	63 44	66 36	93 45	81 39	51 46	41 26	34 23	34 26	65 57	29 21	67 48	27 19	
enced loci	144	92	52	148	53	87	83	41	50	43	84	93	
equences	734	515	263	342	211	750	697	170	219	262	432	360	
sequence	760	867	204	379	302	778	598	229	277	303	815	648	

cribes the state of progess of human genome mapping as of July 15, 1992. Since the publication of the e wall chart, 214 new genes and 806 new polymorphic markers have been added. The total amount of nown to be mapped is now more than 10.3 Mb. (As with last year's sequence data, this includes sequences).

of disease-related genes was provided by Dr. V. McKusick, Johns Hopkins Hospital, Baltimore, MD. markers that have a heterozygosity index (HET) of >70% are particularly useful for linkage studies and the mapping of di sites (STSs) have number of polymo during the past yaddition to the to which sequence is

DNA Sequencer 909: Bidirectional solid phase

913: Dynamic point

PhastSystem[™] • Application Note 382: Diagnostic detection of SSCP: a simplified non-radioisotopic method as applied to exon 11 of the CFTR gene

• Application Note 383: Diagnostic detection of SSCP: a rapid and sensitive non-radioisotopic technique as applied to exon 8 of the F9 gene

ces in Human Gene Mapping

8	9	10	11	12	13	14	15	16	17	18	19	20	21	
64 22	77 26	79 15	154 46	136 23	31 13	66 19	65 17	83 17	135 26	28 9	132 24	45 14	39 8	
308 178 12	242 105 34	263 116 11	1059 320 23	218 82 7	200 87 11	133 63 11	173 76 8	516 163 19	932 268 23	79 51 14	364 97 11	143 66 21	322 110 19	
34 26	65 57	29 21	67 48	27 19	28 25	20 13	33 29	59 37	269 46	25 19	42 31	42 38	62 44	
41	50	43	84	93	12	49	31	53	98	17	86	24	23	
170	219	262	432	360	114	881	109	151	288	90	412	129	141	
229	277	303	815	648	113	686	183	429	860	137	487	175	95	

publication of the he total amount of lata, this includes

al, Baltimore, MD. linkage studies and the mapping of disease genes. Most of these polymorphisms are simple tandem repeats that can be de sites (STSs) have proven to be valuable in physical mapping, especially in the construction of large number of polymorphic STS markers (this is the same as the PCR-based polymorphic markers in the 19 during the past year. These markers are helpful in genetic mapping, in that they are easy to use and addition to the total amount of sequence per chromosome, the number of sequences per chromosome which sequence is contained in GenBank have also been included to give some indication of the amount

Gene Navigator[™] • Application Note: Application of Gene Navigator for long-range physical mapping of DMD YACs

• Application Note: Preparation and separation of Borrelia burgdorferi plasmid DNA

FPLC® Sys • Application Note: Large sc plasmid DNA by Mono Q® System

• Technical Note: FPLC® Au

						OLO DINO OLOL
A3*	S175		q21.3-q22	CPX	Cleft palate, X-linked	PGK1 - <i>CPX</i> - S17
иН	\$52* \$331 \$52* _\$15		q22	COL4A5	Alport syndrome (nephritis and deafness)	$\alpha 5$ chain of collagen IV
CP	_S80 _S439		q25-q26.1	OCRL	Lowe oculocerebrorenal syndrome	Candidate cDNA cloned
	S115 YS64 YS61		q25-q26	ADFN	Albinism-deafness syndrome	S37 - ADFN - F9
	YS61 Tel Bam 3.4		q28	IP2	Incontinentia pigmenti-2, familial, male-lethal type	Linked to S52, <i>F8C</i> ; may be heterogeneous
ed gene	e	- YAC contig				

GENOME MAPS III

U1110 - 0200

Barbara R. Jasny, Science coordinator

Authors

The X Chromosome

Jean-Louis Mandel, INSERM, Strasbourg, France

Anthony P. Monaco, Imperial Cancer Research Fund, John Radcliffe Hospital, Cambridge, U.K.

David L. Nelson, Baylor College of Medicine, Houston, TX

David Schlessinger, Washington University, School of Medicine, St. Louis, MO

Huntington F. Willard, Case Western Reserve University, School of Medicine, Cleveland, OH

Advances in Human Gene Mapping

Michael Chipperfield and Peter Pearson, Genome Data Base, Baltimore, MD

> Paul Gilna and Michael Cinkosky, GenBank, Los Alamos National Laboratory, NM

> > Reviewers

Pamela R. Fain, University of Utah, Salt Lake City, UT

> Frans P. M. Cremers, University Hospital, Nijmegen, The Netherlands

> > **Graphic Artist**

Susan Nowoslawski

© 1992 Science , a publication of The American Association for the Advancement of Science

17	18	19	20	21	22	x	Y	
35 26	28 9	132 24	45 14	39 8	71 17	225 111	18 1	
32 68 23	79 51 14	364 97 11	143 66 21	322 110 19	360 140 6	1382 290 21	406 32 2	
69 46	25 19	42 31	42 38	62 44	16 11	136 52	180 0	
98	17	86	24	23	41	72	10	
88	90	412	129	141	196	435	17	
60	137	487	175	95	402	553	24	

sms are simple tandem repeats that can be detected by PCR. Sequence tagged oping, especially in the construction of large contigs from YAC libraries. The the PCR-based polymorphic markers in the 1991 table) has more than doubled tic mapping, in that they are easy to use and often are highly informative. In ne, the number of sequences per chromosome and the number of markers for ncluded to give some indication of the amount of sequence per marker.

ns and breakpoints

Gene mapping of

d separation of

FPLC[®] System • Application Note: Large scale purification of plasmid DNA by Mono Q[®] HR5/5 on FPLC[®] System

• Technical Note: FPLC® Automation

SMART [™] System • Technical Note: Micropurification by RPC for protein/peptide sequence analysis

• Application Note: Micropreparative purification and analysis of DNA