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Inactivation of the p34 CdC2-Cy~lin B Complex 
by the Human WEE1 Tyrosine Kinase 

Laura L. Parker* and Helen Piwnica-Worms*? 
Entry into mitosis in Schizosaccharomyces pombe is negatively regulated by the weel+ 
gene, which encodes a protein kinase with serine-, theonine-, and tyrosine-phosphorylating 
activities. The weel+ kinase negatively regulates mitosis by phosphorylating ~ 3 4 " ~ ~ ~  on 
tyrosine 15, thereby inactivating the p34cdc2-cyclin B coinplex. The human homolog of the 
weel+ gene (WEEIHu) was overproduced in bacteria and assayed in an in vitro system. 
Unlike its fission yeast homolog, the product of the WEElHu gene encoded a tyrosine- 
specific protein kinase. The human WEE1 kinase phosphorylated the p34cdc2-cyclin B 
complex on tyrosine 15 but not on threonine 14 in vitro and inactivated the p34cdc2-cyclin 
B kinase. This inhibition was reversed by the human Cdc25C protein, which catalyzed the 
dephosphorylation of ~ 3 4 " ~ " ~ .  These results indicate that the product of the WEElHugene 
directly regulates the p34cdc2-cyclin B complex in human cells and that a kinase otherthan 
that encoded by WEElHu phosphorylates p340dC2 on threonine 14. 

T h e  mechanisms that regulate progres- 
sion through the eukaryotic cell cycle are 
highly conserved. The G,-M phase tran- 
sition is universally regulated by p3qdC2, a 
Ser-Thr protein kinase. The activity of 
the p34cdc2-cyclin B complex is required 
for progression of cells into the M phase 
(1). In fission yeast, several mitotic regu- 
lators have been identified that are 
thought to directly regulate the p34iCdc2- 
cyclin B complex. One of these regulators, 
wee1 +, encodes a kinase (p107""') that 
has been classified as a dual-specificity 
kinase on the basis of its ability to auto- 
phosphorylate on Ser and Tyr residues 
( 2 4 ) .  p107""' phosphorylates the 
p34.'dc2-cyclin B complex on Tyr15, there- 
by rendering p3qdC2 inactive (2). A sec- 
ond mitotic regulator. cdc25+. encodes a - 
protein phosphatase that dephosphory- 
lates Tyr15 and activates the p3qdC2-cy- 
clin B complex (5-10). In higher eukary- 
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otes, p3qdC2 is negatively regulated by 
phosphorylation on both Thr14 and Tyr15 
(1 1, 12). The human kinases responsible 
for these phosphorylations are unknown, 
although the cdc25+ gene product has 
been implicated in both Thr14 and Tyr15 
dephosphorylation (6, 8, 10). O n  the 
basis of the conservation of structure and 
function demonstrated for cell cycle regu- 
lators throughout evolution, it was pre- 
dicted that the human homolog of wee1 + 

would also encode a dual-specificity kinase 
that would negatively regulate p34cdc2 by 
phosphorylation of Tyr15 and Thr14 (1 3). 
A gene (WEE1 Hu) from a human foreskin 
fibroblast cDNA library has been cloned 
by its ability to rescue weel+ mutants in 
Schizosaccharornyces pornbe (1 4). WEE1 Hu 
shares 29% sequence identity within the 
kinase domain of wee1 + and is predicted 
to encode a protein kinase of -49 kD. 

To analyze the biochemical activities 
associated with the human WEE1 gene 
product, we expressed it in bacteria as a 
fusion protein with glutathione-s-transfer- 
ase (GST) (15). A bacterial expression 
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of other dual specificity kinases (1 3). The 
resulting fusion protein (GST-p49WEE'H" ) 
migrated on SDS-polyacrylamide gels with 
an apparent molecular size of 76 kD (Fig. 
1A). Cleavage of the fusion protein with 
thrombin generated a 49-kD protein denot- 
ed ~ 4 9 ~ ~ ' ~ " .  The pro- 
tein was phosphorylated both in vitro (Fig. 
1B) and in vivo (Fig. ID) (1 6). In both 
cases, phosphoamino acid analysis revealed 
only phosphotyrosine (Fig. 1, C and E). 
Similar results were obtained with 
~ 4 9 ~ ~ ~ ' ~ "  from which GST had been re- 
moved (1 7). These results are in contrast to 

Fig. 1. Expression and phosphorylation of the 
human WEE1 kinase in bacteria. (A) GST- 
p4gWEElH" (lane 1) and GST (lane 2) were 
precipitated from bacterial lysates with glu- 
tathione agarose. Proteins were resolved by 
SDS-PAGE and visualized by staining with 
Coomassie blue. (B) GST-p49WEE1HU (lane 1) 
and GST (lane 2) were precipitated from bac- 
terial lysates with glutathione agarose, and ki- 
nase assays were performed in vitro. Proteins 
were resolved by SDS-PAGE and visualized by 
autoradiography. (C) Two-dimensional phos- 
phoamino acid analysis of G S T - P ~ ~ ~ ~ ' ~  Ia- 
beled in vitro. (D) Bacteria that expressed ei- 
ther GST-p49WEE1Hu (lane 1) or GST (lane 2) 
were incubated with p2P]orthophosphate. Pro- 
teins were precipitated with glutathione aga- 
rose, resolved by SDS-PAGE, and visualized by 
autoradiography. Arrowhead indicates GST- 
WEE1 Hu. (E) Twodimensional phosphoamino 
acid analysis of GST-p49WEE1HU labeled in vivo; 
Y, phosphotyrosine; S, phosphoserine; T, phos- 
phothreonine. 

those seen with pl07-' from S. pornbe, 
where autophosphorylation occurs primari- 
ly on Ser, Tyr, and, to a lesser extent, Thr 
residues (2-4). 

To test whether the human p34cdcZ-cy- 
clin B complex is a substrate for the human 
WEEl kinase, we performed phosphoryla- 
tion reactions in vitro (2). The p 3 4 w  
cyclin B complex was isolated from insect 
cells that had been co-infected with recom- 
binant viruses encoding GST-cyclin B and a 
mutant of p34"bZ encoding Arg for Lys33 
[p34"62 ( w 3 ) ] .  Mutation of Lys3' renders 
the p34"b2-cyclin complex inactive (2, 12, 
18). GST-cyclin B and p34&(w3)  were 
used in this experiment because large 
amounts of p34"bz-cyclin B complex were 
easily isolated with glutathione agarose as an 
aflinity reagent (Fig. 2A), and background 
phosphorylation that was a result of an active 
p34"bZ-GST-cy~lin B complex was eliminat- 
ed (2). Both GST-P~~-'~" (Fig. 1A) and 
GST (Fig. 1A) were produced in bacteria, 
isolated on glutathione agarose, and then 
eluted with excess glutathione. Kinase assays 
were then performed in vitro with purified 
proteins (19). The p34& ( w 3 )  protein 
was not detectably phosphorylated when 
kinase assays were performed in vitro in 
the absence of G S T - P ~ ~ ~ ~ ' ~ "  but was 
phosphorylated in the presence of GST- 

p49WEE'H" (Fig. 2B). Phosphoarnino acid 
analysis of p34"GZ revealed only phosphoty- 
rosine (Fig. 2C). A single phosphopeptide 
was detected upon two-dimensional phos- 
phowyptic mapping, and Tyr15 was identi- 
fied as the site of phosphorylation (Fig. 
2D). The human WEEl kinase did not cata- 
lyze the phosphorylation of ~34&(A$~)  on 
Thr14. Similar results were obtained with the 
human WEEl kinase produced in insect cells 
(1 7). The catalytic domain of the human 
Cdc25C phosphatase dephosphorylated 
p34"bZ(A$3) on Tyr15, and sodium ortho- 
vanadate blocked the dephosphorylation of 
Tyr15 by the Cdc25C phosphatase (Fig. 2B) 
(20). The human WEEl kinase was also 
tested for its ability to phosphorylate enolase, 
casein, histone HI, monomeric p34&, and a 
peptide derived from p34"bZ containing Thr14 
and TyrlS. Only monomeric p34& and the 
peptide were phosphorylated by the WEElHu 
kinase, and the phosphorylation was on Tyr15 
inbothcases (17). 

To determine the effect of Tyr15 phos- 
phorylation on the kinase activity of the 
p34c&2-cyclin B complex, we performed 
histone H1 kinase assays (Fig. 3) (21). 
When the p34"L2-GST-cyclin B complex 
was incubated either alone or with purified 
GST, the complex functioned efficiently 
as a histone H1 kinase. However, phos- 

Flg. 2. Regulation of TyrIS phosphorylation by the human WEEl kinase and the Cdc25C 
phosphatase in vitro. (A) Insect cells were co-infected with recombinant viruses encoding 
p34-(Arg? and GST-cyclin B. Lysates were prepared, and the p34OdC2(Arg33qclin B 
complex was isolated on glutathione agarose beads. The complex was resolved by SDS-PAGE and 
visualized by staining with Coomassie blue. (B) The p34-(Argy-cyclin B complex was isolated 
as described in (A). Kinase assays were performed in vitro in the presence of the ~34-(Arg~~)- 
cyclin B complex alone (lane 1) or in the presence of the p34-(Arg33)-cy~lin B complex with 
either soluble GST (lane 2) or with soluble GST-p4gWEElHU (lanes 3 through 5). Kinase reactions 
were washed, and phosphatase assays were performed in the presence of phosphatase buffer 
alone (lanes 1 through 3) or phosphatase buffer containing GST-C215 protein in the absence (lane 
4) or in the presence (lane 5) of 2 mM vanadate. Reactions were stopped by boiling in SDS-sample 
buffer; proteins were resolved by SDS-PAGE and visualized by autoradiography. (C) Two- 
dimensional phosphoamino acid analysis of p34-(Arg? phosphorylated by GST-p4gWEElH"; Y, 
phosphotyrosine; S, phosphoserine; T, phosphothreonine. (D) Two-dimensional phosphotryptic 
maps of (1) p34-(kg3"), (2) the ThrI4- and Tyrls-containing peptide phosphorylated by ppGOV-w 
in vitro, and (3) a mixture of (1) and (2). Arrowheads indicate the origin. 
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REPORTS 

phorylation of the p34cdc2-cyclin B com
plex by GST-p49WEE/HM ablated the his-
tone HI kinase activity (Fig. 3). The 
activity was partially restored upon addi
tion of the catalytic domain of the 
Cdc25C phosphatase, and sodium ortho-
vanadate blocked the action of the 
Cdc25C phosphatase (Fig. 3). The ability 
of the Cdc25C phosphatase to reactivate 
the complex varied between experiments; 
on average, 50% of the activity was re
stored. This may reflect either a loss of 
complex during the experimental manipu
lations or some variability in the ability of 
the Cdc25C phosphatase to completely 
dephosphorylate the phosphorylated form 
of the complex under these conditions. 
Alternatively, during the course of the 
experiment p34cdc2 may become partially 
dephosphorylated on Thr161, which would 
prevent reactivation of the p34cdc2-cyclin 
B kinase (12, 22). 

The results presented here suggest that 
the human gene WEElHu encodes a Tyr-
specific protein kinase (p49WEE,Hw) unlike 
its fission yeast homolog, which encodes a 
dual specificity kinase. Both kinases phos-
phorylate p34cdc2 on Tyr15. Coincident with 
the Tyr15 phosphorylation of p34cdc2 by 
p49WEEiHu was an inactivation of the his-
tone HI kinase activity of the human 
p34cdc2-cyclin B complex. This inhibition 
was reversed upon Tyr15 dephosphorylation 

7 8 

H1 

Fig. 3. Regulation of p34c c t e 2-cycl in B kinase 
activity by the human WEE1 kinase and the 
Cdc25C phosphatase in vitro. The human 
WEE1 kinase and the Cdc25C phosphatase 
were tested for their ability to regulate the 
histone H1 kinase activity of the p34 c d c 2 -cyc l in 
B complex in vitro. Insect cells were co-infected 
with recombinant viruses encoding wild-type 

p 3 4cdc2 a n d GST-human cyclin B. The 
p34 c d c 2 -cyc l in B complex was isolated on glu
tathione beads, and kinase assays were per
formed in kinase buffer alone (lane 4) or in 
kinase buffer containing either soluble GST 
(lane 5) or soluble GST-p49V V E E t H u (lanes 6 
through 8). Kinase reactions were washed, and 
then phosphatase assays were performed in 
the presence of either phosphatase buffer 
alone (lanes 4 to 6) or phosphatase buffer 
containing Cdc25 protein in the absence (lane 
7) or in the presence (lane 8) of sodium ortho-
vanadate (2 mM). Reactions were washed, and 
histone H1 kinase assays were performed. Re
combinant Cdc25(C215) (lane 1), GST-
P4QWEEIHU ( ) a n e 2 ) ( and GST (lane 3) were also 
assayed for histone H1 kinase activity. 

in vitro, which was catalyzed by the Cdc25C 
phosphatase. These results demonstrate that 
p49WEEiHu and the Cdc25C phosphatase 
possess antagonistic activities that are capa
ble of regulating the activity of the p34a k 2-
cyclin B complex in vitro. This is not to say 
that p49WEE1Hu regulates the activity of the 
p34cdc2-cyclin B complex in vivo. The abil
ity to rescue mutants in yeast is not a 
definitive test of functional homology; for 
example, human G2 cyclins rescue CLN (Gl 

cyclins) function in Saccharomyces cerevisiae 
(23). Multiple human homologs of both 
cdc25* and the cyclins have been identified 
(5, 23, 24). Thus, p49WEEiH" may not be 
the only member of its family. 

p34ak2 in higher eukaryotes is phospho
rylated on both Thr14 and Tyr15. Phospho
rylation of either residue inactivates the 
p34cic2-cyclin B complex (11, 12). Neither 
S. pombe plO?***1 nor human p49WEE1Hu 

phosphorylated p34cdc2 on Thr14 in vitro. 
This suggests that a kinase other than that 
encoded by WEElHu phosphorylates p34cdc2 

on Thr14. Thus, more than one signal trans
duction pathway in higher eukaryotes could 
result in the inactivation of p34cdc2. 
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