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Formation and Activation of a Cyclin 
E-cdk2 Complex During the G, Phase of the 

Human Cell Cycle 

Andrew Koff, Antonio Giordano,* Dipty Desai, Katsumi Yamashita, 
J. Wade Harper, Stephen Elledge, Takaharu Nishimoto, 
David 0. Morgan, B. Robert Franza, James M. Roberts 

Human cyclin E, originally identified on the basis of its ability to function as a GI cyclin in 
budding yeast, associated with a cell cycle-regulated protein kinase in human cells. The 
cyclin E-associated kinase activity peaked during GI, before the appearance of cyclin A, 
and was diminished during exit from the cell cycle after differentiation or serum withdrawal. 
The major cyclin E-associated kinase in human cells was Cdk2 (cyclin-dependent kinase 
2). The abundance of the cyclin E protein and the cyclin E-Cdk2 complex was maximal 
in GI cells. These results provide further evidence that-in all eukaryotes assembly of a 
cyclin-Cdk complex is an important step in the biochemical pathway that controls cell 
proliferation during GI. 

A major goal in studying the proliferation gene is induced in murine macrophages in 
of eukaryotic cells is to describe the bio- late GI  by colony-stimulating factor-1 ( I ) ,  
chemical pathways that regulate progres- and the gene is located at the breakpoint of 
sion through the G, phase of the cell cycle. a chromosomal rearrangement in a human 
Several cyclins have been identified that parathyroid tumor (2). The genes encoding 
may function in GI regulation in higher cyclin C, cyclin D, and cyclin E were 
eukaryotes. Transcription of the cyclin D discovered by screening human and Dro- 

sophila cDNA libraries for genes that could 
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complement mutations in the Saccharomy- 
ces cerevisae CLN genes, which encode G I  
cyclins (3-5). In support of a Gl  function 
for cvclin E it was shown to bind and 
activate the Cdc2 protein kinase in extracts 
from human GI  cells (3) and the steady 
state level of cyclin E mRNA is cell cycle- 
dependent in human cells and peaks in late 
Gl (5). 

Immunoprecipitates of cyclin E from ex- 
ponentially growing MANCA cells (a hu- 
man B cell line) contain a protein kinase 
(3). We examined the activity of the cyclin 
E-associated kinase during the cell cycle. 
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We used centrifugal elutriation to separate 
exponentially growing MANCA cells into 
eight fractions (Fig. IA). The cyclin E-as- 
sociated kinase activity was cell cycle de- 
pendent. In three separate experiments, the 
maximal amount of kinase activity was 
between four and eieht times greater than " u 

the minimum kinase activity during the cell 
cycle (Fig. 1B). The peak in kinase activity 
corresponded to those fractions containing 
the greatest percentage of late G I  and early 
S phase cells. In some experiments we also 
observed a smaller second peak of cyclin 
E-associated kinase activity in the fraction 
containing cells in G, and M phases (6). 

The activitv of the cvclin E-associated 
kinase differed from that of the kinases 
associated with cyclin A. Monoclonal an- 
tibodies to cyclin A (C160) were used to 
immuno~reci~itate cvclin A and its associ- 

A .  

ated proteins from the same cell extracts in 
which the cyclin E-associated kinase had 
been measured (Fig. 1C). Cyclin A-associ- 
ated kinase activity was first detected at the 
start of S phase (7, 8), but it continued to 
rise throughout S phase and peaked in G,. 
The maximal activitv of the cvclin A-asso- 
ciated kinase appeared to be &proximately 
five to ten times that of the cyclin E-asso- 
ciated kinase (6). 

We examined the kinetics with which 
the cyclin E-associated kinase accumulated 
during GI.  MANCA cells were synchro- 
nized in early G,  and allowed to progress 
into S phase (8). Entry into S phase was 
determined both by flow cytometric mea- 
surement of nuclear DNA content (Fig. 
ID) and by measuring [3H]thymidine incor- 
poration into chromosomal DNA (6). The 
cvclin E-associated kinase activitv in- 
&eased during G1 and was maximal just as 
the cells entered S phase (Fig. IE). The 
cyclin A-associated kinases appeared after 
the cyclin E-associated kinase activity; they 
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were absent in G, and first detected as ceils 
entered S phase (Fig. 1E). The cyclin E-as- 
sociated kinase was present in proliferating 
rat 208F cells but disappeared after cells 
became quiescent as a result of serum with- 
drawal (Fig. IF). When rat PC12 cells were 
induced to differentiate into neurons by 
exposure to nerve growth factor, the cyclin 
E-associated kinase activity was diminished 
(Fig. 1 F) . 

To characterize the proteins associated 
with cyclin E in vivo, we labeled exponen- 
tially 'growing HeLa cells with - either 
[32P]orthophosphate or [35S]methionine 
and prepared extracts. Extracts were sub- 
jected to immunoprecipitation with affini- 
ty-purified antibodies to cyclin E (9), and 
antibodies to a synthetic peptide corre- 
sponding to the COOH-terminal region of 
human CdkZ (anti-Cdk2) (10). The latter 
antiserum recognizes CdkZ but not CdcZ 
(10, 11). The immunoprecipitates were 
fractionated by two-dimensional polyacryl- 
amide gel electrophoresis (PAGE) (Fig. 2). 
which resolves the various members of the 
CdcZ protein family (12-1 4). 

Immunoprecipitation of proteins from 
32P-labeled extracts with affinity-purified 
antibodies to cyclin E revealed a set of six 
proteins that had molecular sizes and iso- 
electric points consistent with their being 
members of the Cdc2 protein family (Fig. 
2A, proteins labeled 1, 2, and a to d). Two 
of these proteins were also seen in anti- 
cyclin E immunoprecipitates from cells la- 
beled with [35S]methionine (Fig. 2A) (15). 
Proteins of similar mobility were immuno- 
precipitated with affinity-purified antibodies 
to the COOH-terminus of Cdk2, from ex- 
tracts of either 32P-labeled (Fig. 2B) or 
35S-labeled cells (Fig. 2C). Mixing the 
anti-cyclin E and anti-Cdk2 immunopre- 
cipitates revealed that these proteins pre- 
cisely comigrated. Thus, these cyclin E-as- 
sociated proteins are apparently isoforms of 
CdkZ (Fig. 2, B and C) . Immunoprecipita- 
tion of the cyclin E-associated Cdk2 with 
anti-cyclin E was blocked by recombinant 
glutathione-S-transferase (GST)-cyclin E 
fusion protein (Fig. 2, B and C) but not by 
excess GST (5A). Proteins 1 and 2 are 
similar to the isoforms of Cdk2 associated 
with the adenovirus E1A protein and cyclin 
A (1 2). However, proteins a to d have not 
been observed previously in association 
with other proteins. It appears, therefore, 
that we have identified at least six phos- 
phorylated isoforms of CdkZ bound to cy- 
clin E. One interpretation is that the cyclin 
E-Cdk2 complex integrates the informa- 
tion provided by the many signals that 
control cell proliferation. Phosphorylation 
of multiple sites on Cdk2 could have both 
positive and negative effects on CdkZ activ- 
ity, and a particular phosphorylated state 
may be required for specific functions. The 

activation of the cyclin A-Cdk2 complex, 
which occurs after commitment to the cell 
cycle has been made, may be responsive to 
many fewer factors and therefore biochem- 
ically less elaborate. 

A second prominent set of proteins in 
anti-cyclin E immunoprecipitates from 
both 32P- and 35S-labeled cell extracts mi- 
grated at 45 kD, the expected molecular 
size of the cyclin E protein (Fig. 2A) (3, 5). 
Immunoprecipitation of these proteins was 

Fig. 1. Regulation of the cyclin 
E-associated kinase during the 
cell cycle, growth, and differenti- 
ation. Exponentially growing 
MANCA cells in different phases 
of the cell cycle were separated 
by centrifugal elutriation (8). 
Manca cells were maintained at a 
density of 2 x lo5 cells/ml in 
RPMl containing calf serum (1 0%) 
in an atmosphere of 5% CO,. (A) 

blocked by GST-cyclin E but not by GST 
(6). Therefore, we have tentatively identi- 
fied these proteins as isoforms of cyclin E 
(16). Two of the three putative cyclin E 
isoforms detected in 35S-labeled cell ex- 
tracts were also detected in 32P-labeled 
extracts indicating that cyclin E might exist 
in multiple phosphorylated states. 

Two other proteins were specifically im- 
munoprecipitated by anti-cyclin E (1 7). 
One migrated in the vicinity of the Cdk2 

Fraction 
Position in the cell cvcle. D N A  A I 
content of the cells in each frac- C 
tion was determined bv flow cvto- 
metric analysis of propidium. io- 
dide stained nuclei. The ordinate 
shows cell number and the ab- 
scissa shows fluorescence inten- 
sity. (B) Cyclin E-associated his- 
tone HI kinase activity. Proteins 
from equal numbers of cells from 
each fraction were immunopre- 
cipitated with affinity purified anti- Fraction 

bodies to cyclin E (anti-CycE) and 
tested for the presence of histone 
H1 kinase (26). The ordinate 
shows the relative amount of H I  
phosphorylation quantitated by D 
phosphor imaging. (C) Cyclin -- E 
Aassociated histone HI kinase i 3 - 3  @ 8 - 
activity. C160 monoclonal anti- - ~g S F  
bodies to cyclin A (anti-CycA) I ;e2 "Pg were used to measure cyclin - 

- - 
0 - 2% 

Aassociated kinase activity. (0 l-2 n g ,  4 := 
and E) G, cells purified by elutrl- V) c 

ation were cultured at 32.5"C and 
2 js portions were harvested hourly for 1 a$ 

0 0 
w6 

measurement of nuclear DNA 3 4 5 6 7  0 05 
content (D) and cyclin A- and 1 7 7  r n Time (hours) m 

r cyclin Eassociated kinase activ- n 
ities (E) as cells approached and 
entered S phase. The numbers (3 to 7) in each flow cytomet- 1,CS O.l%CS 
ric histogram (D) indicate hours after release from mitotic 
arrest. The cyclin A- and cyclin E-associated kinase activi- 1 2 3  4 5 6  

208F r m  --- ties were quantified by phosphorimaging. (F) Cell lysates 
from growing and quiescent rat 208F cells, and growing rat -NGF +NGF 

PC-12 cells or rat PC-12 cells induced to differentiate with 1 2 3  4 5 6  

NGF were immunoprecipitated with pre-immune antiserum PC-12 -I - 
(lanes 1 and 4), affinity-purified anti-cyclin E (lanes 2 and 5). 
and affinity-purified antibodies to the COOH-terminal peptide from human Cdc2 (lanes 3 anc 
assayed for H I  kinase activity. Rat PC-12 cells were maintained in Dulbecco's minimum e 
medium (DMEM) containing fetal calf serum (5%) and horse serum (10%) in an atmosphere 
containing 10% CO,. To induce neuronal differentiation confluent cells were split 1 :20, and on the 
second day the medium was replaced with serum-free medium. Cells were incubated in serum-free 
medium for 24 hours and the med~um was then changed to complete medium containing nerve 
growth factor (NGF) (50 nglml). NGF was added every two days and cells were harvested after 4 
to 5 days. Rat 208F cells were maintained in DMEM containing 10% calf serum (CS) in an 
atmosphere contaming 5% CO,. To induce quiescence the cells were washed twice with 
phosphate-buffered saline and subsequently grown in DMEM with 0.1% calf serum for 48 hours. 

j 6) and 
ssential 

SCIENCE . VOL. 257 I8 SEPTEMBER 1992 



isoforms (Fig. 2A, panel 11, spot 3), but was 
not detected in anti-Cdk2 immunoprecipi- 
tates (Fig. 2C). Immunoprecipitation of 
this protein was blocked by GST-cyclin E 

(Fig. 2C) but not by GST (6). 32P-labeling protein immunoprecipitated by an antise- 
of this protein was not detected in extracts rum (G8) raised against the Schizosaccharo- 
from 32P-labeled cells (Fig. 2A). This pro- myces pombe Cdc2 protein (6). The G8 
tein appeared to precisely comigrate with a antiserum recognizes many members of the 

Fig. 2. Two-dimensional gel analysis of cyclin E-associated proteins 
(28). Extracts from exponentially growing HeLa cells were labeled with 
either [32P]orthophosphate or [35S]methionine and proteins were immu- 
noprecipitated with the indicated antibodies. lmmunoprecipitates were 
fractionated by two-dimensional high-resolution PAGE. HeLa cells were 
grown and extracts prepared as described (12, 13). We used affinity- 
purified anti-cyclin E (2 ~ g )  and, in some instances, 20 pg of competing 
antigenic protein. Cdk2 was precipitated with 1 to 5 k g  of affinity-purified 
anti-Cdk2 (10). Cell extracts were incubated with antibody for 1 hour at 
O°C, and protein A Sepharose (40 pl) was added. The mixture was 
incubated on a rotator for 20 min and then centrifuged. The sedimented 
material was washed three times in lysis buffer. Conditions for two- 
dimensional gel electrophoresis were as described (12). lsoelectric 
focusing (horizontal dimension) was achieved between pH 3.5 (left) to pH 
10 (right) and electrophoresis in the second dimension (vertical) was on 

a 10% polyacrylamide gel. (A) Panel I, anti-cyclin E immunoprecipitate of 
[32P]orthophosphate-labeled extract; spots corresponding to Cdk2 iso- 
forms are indicated by 1 and 2, and a to d. The phosphorylated isoforms 
of cyclin are indicated by 2 and 3. The other cyclin E-associated protein 
is indicated by x. Panel II, anti-cyclin E immunoprecipitate of [35S]methio- 
nine-labeled extract. Tubulins and actin are indicated for purposes of 
orientation. Cyclin E isoforms are indicated in brackets. Cdk2 isoforms are 
indicated by 1 and 2. The other cyclin E-associated protein is indicated 
by x. (B) Close-up of the region of the gel containing the labeled isoforms 
of Cdk2 from 32P-labeled extract. Panel I, anti-cyclin E immunoprecipi- 
tate; panel II, mixture of anti-cyclin E and anti-Cdk2 immunoprecipitates; 
panel Ill, anti-cyclin E immunoprecipitate prepared in the presence of 
unlabeled recombinant cyclin E; panel IV, anti-Cdk2 immunoprecipitate. 
(C) As in (B) except that 35S-labeled extracts were used. 
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CdcZ protein family, suggesting that this 
protein might be CdcZ or a protein related 
to Cdc2. 

Anti-cyclin E immunoprecipitates also 
contained a relatively acidic phosphopro- 
tein with an apparent molecular size of 32 
kD (Fig. 2A, spot x). This protein was 
observed in immunoprecipitates from both 
32P- and 35S-labeled cell extracts and its 
immunoprecipitation was blocked by GST- 
cyclin E but not by GST (6). We do not 
know the identity of the acidic 32-kD 
protein, and we do not have any evidence 
at present to suggest that it is another 
member of the CdcZ family (1 8). 

To confirm these results we used immu- 
noblotting to examine the association be- 
tween cyclin E and both CdkZ and Cdc2. 
Immunoblots of whole-cell extracts showed 
two forms of CdkZ (Fig. 3A) (10). In both 
aphidicolin-arrested cells (Fig. 3) and in 
exponentially growing cells (Fig. 4) CdkZ 
was detected in association with cyclin E 
(1 9), and cyclin E preferentially associated 
with a more rapidly migrating phosphoryl- 
ated form of CdkZ (10, 20). We also de- 
tected CdcZ in the anti-cyclin E immuno- 
precipitates, although its abundance was 
substantially less than that of Cdk2. In 
exponentially growing cells a less phospho- 
rylated form of CdcZ associated with cyclin 
E, whereas in aphidicolin-arrested cells more 
highly ph~sphor~lated forms of Cdc2 were 
also present (Fig. 3). Immunodepletion ex- 
periments confirmed that the major cyclin 
E-associated kinase was CdkZ (2 1). 

We examined the formation of the cy- 
clin E-Cdk2 complex during the MANCA 
cell cycle. Exponentially growing MANCA 
cells were separated into eight fractions by 
centrifugal elutriation (Fig. 4A). Cyclin E 
and its associated proteins were immuno- 
precipitated with affinity-purified anti-cy- 
clin E and the presence of CdkZ was detect- 
ed by immunoblotting with anti-Cdk2. The 
amount of the cyclin E-Cdk2 complex 
reached a maximum during late G, and 
early S phase and declined as cells pro- 
gressed through the remainder of the cell 
cycle. The abundance of the cyclin E-Cdk2 
complex correlated with the cell cycle pe- 
riodicity of the cyclin E-associated kinase 
activity. In MANCA cells, the cyclin 
E-Cdk2 com~lex did not accumulate in an 
inactive form before its activation in late G,. 

We determined the abundance of the 
cyclin E protein during the cell cycle by 
immunoblotting the proteins in anti-cyclin 
E immunoprecipitates with anti-cyclin E. 
The amount of the cyclin E protein was 
maximal in late G, and declined in S, G2, 
and M phases (Fig. 4B). The amount of 
cyclin E protein detected was linearly de- 
pendent on the amount of cell extract 
subjected to immunoprecipitation (6). 
These observations suggested that the 

abundance of the cyclin E-Cdk2 complex, 
and hence the periodicity of the cyclin 
E-associated kinase activity, may be direct- 
ly regulated by the abundance of the cyclin 
E protein. It is also possible that the phos- 
phorylation state of cyclin E contributes to 
the assembly of this complex. 

Our observations indicate that cyclin E 
preferentially associates with CdkZ rather 
than CdcZ in human cells. One possibility 
is that cyclin E has a greater affinity for 
CdkZ than for Cdc2. We expressed cyclin 

E, Cdc2, and CdkZ from baculovirus vec- 
tors (22). The formation of cyclin E-Cdc2 
and cyclin E-Cdk2 complexes was mea- 
sured by gel filtration chromatography. As 
monomers, both CdcZ and CdkZ eluted 
during Superose-12 gel filtration chroma- 
tography with apparent sizes of 30 to 40 kD 
(Fig. 5, A and B). Negligible amounts of 
histone H1 kinase activity were detected in 
these lysates (6, 27). When extracts con- 
taining cyclin E and CdkZ were mixed, the 
majority of the CdkZ protein eluted at an 

A Exponential Aphkllcolin - B - Aphidiwlin 

1 2  3 4 5 6  7 8 9 1 0 1 1  1 2 3 4  5  6 7  8 
- i 

Cdk2 

Fig. 3. Detection of cyclin E-Cdc2 and cyclin E-Cdk2 complexes by immunoblotting. (A) 
lmmunoprecipitates from exponentially growing MANCA cells and from cells synchronized at the 
start of S phase with aphidicolin were probed with an antiserum to a peptide corresponding to the 
COOH-terminal region of human Cdc2 (anti-Cdc2). For all immunoprecipitations the antibodies had 
been cross-linked to Sepharose. lmmunoprecipitations were done with the pre-immune antiserum 
(lanes 1, 8, and 9), Sepharose beads alone (lanes 2 and 7), affinity-purified anti-Cdc2 (lanes 3, 6, 
and lo), or affinity-purified anti-cyclin E (lanes 4, 5, and 11). The set of lanes labeled (-) contained 
no cell extract. (B) As in (A) except that the immunoblots were probed with antiCdk2. Immuno- 
precipitations were done with pre-immune serum (lanes 1 and 4), anti-Cdc2 (lanes 2 and 6), 
anti-cyclin E (lanes 3 and 7), or Sepharose beads alone (lane 5). A whole-cell extract from cells at 
the start of S phase is shown in lane 8. For synchronization at the start of S phase, GI cells were 
collected from exponentially growing populations of MANCA cells by elutriation and inoculated into 
RPMl containing calf serum (1 0%) and aphidicolin (5 pgtml) and grown for 8 hours. Cells were lysed 
by sonication in SDS-RIPA (1 % deoxycholate, 1 % Triton X-100, 0.1 % SDS, 50 mM tris (pH 8.0), 0.3 
M NaCI, 0.1 mM orthovanadate, 50 mM NaF) containing protease inhibitors. For these experiments, 
approximately 1 mg of affinity-purified antibody, or 1 ml of pre-immune serum was coupled to 1 ml 
of CNBr-activated Sepharose. lmmunoprecipitations were performed with 2.5 x l o7  cells and 100 
pI of antibody-linked Sepharose. Immune complexes were formed for 3 hours at 4°C and were then 
washed twice with SDS-RIPA containing BSA (5 mgtml) and three times with SDS-RIPA. Samples 
were fractionated by PAGE (12% gels). Gels were transferred to nitrocellulose by semi-dry 
electroblotting and the membranes were blocked with either 2% milk in TNT [25 mM tris (pH 7.5), 
150 mM NaCI, 0.05% Tween-201 for Cdc2 or Cdk2, or 1% gelatin in TNT for cyclin E. Blots were 
probed overnight at room temperature with either a 1 :300 dilution of affinity-purified anti-Cdc2, or 
1:1000 dilution of anti-Cdk2, or a 1:1000 dilution of affinity-purified anti-cyclin E. Bound antibody 
was detected with 1lZ5-labeled protein A. 

Fig. 4. Regulation of cyclin E con- A 
centration and the abundance of 
the cyclin E-Cdk2 complex dur- 
ing the cell cycle. (A) Position of 
cell fractions in the cell cycle. 
DNA content of the elutriated 
MANCA cell fractions was deter- b O , i . d G i  p - .  -~ - 
mined by cytometric analysis of L- 
propidium iodide-stained nuclei. 
(B) Lysates were subjected to im- 
munoprecipitation with affinity-pu- 
rified antibodies to cyclin E cou- 
pled to Sepharose and immuno- 
blotted with either anti-Cdk2 (top 
panel) or affinity-purified anti-cy- 
clin E (bottom panel). A non-spe- 
cific band was seen above the 
Cdk2 band in some lanes. The 
histograms were generated by - = - -  ..-- --. 
quantitating the amount of bound 
lZ51-labeled protein A with a phos- 
phorimager. The actual autoradiogram is shown below each histogram (CycE, cyclin E). Extracts 
were prepared from lo7  cells from each fraction and immunoprecipitated with 30 pI of anti-cyclin 
E Sepharose (30 pl). 
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approximate molecular size of 160 kD, in­
dicating that it had formed a complex with 
cyclin E (Fig. 5D). In contrast, when ex­
tracts containing a similar amount of Cdc2 

I 
2 o 

S 
3 
O 

21 25 
Fraction 

Fig. 5. Cyclin E binding to Cdc2 and Cdk2 in 
vitro. Diluted Sf-9 cells lysates containing Cdc2 
(A and C) or Cdk2 (B and D) were incubated 
alone (A and B) or with cyclin E (C and D) for 20 
minutes at 24°C. Cdc2, Cdk2, and cyclin E 
concentrations in these mixtures were all ap­
proximately 0.2 |xM. Mixtures were subjected to 
gel filtration on a Superose-12 column and 
fractions were analyzed for the presence of 
Cdc2 or Cdk2 by immunoblotting with antibod­
ies that recognize a peptide conserved among 
the Cdc2-related proteins (anti-PSTAIRE). Im-
munoblots were probed with 125 l- labeled sec­
ondary antibodies and quantified with a phos-
phorimager (open symbols). Histone H1 kinase 
activity was also measured in the fractions but 
is shown only for the two active combinations 
(C and D); activity in (A) and (B) was negligible. 
Kinase activity was quantitated by Cerenkov 
counting of excised gel bands (closed sym­
bols). Note the change in phosphorylation 
scales in the different panels. Molecular sizes 
(in kilodations) of marker proteins, determined 
in parallel runs, are indicated (Vo, void volume; 
160 kD, immunoglobulin G; 45 kD, ovalbumin; 
12 kD, cytochrome C). Complex formation be­
tween human cyclin E and human Cdc2 or 
human Cdk2 and the kinase activity of the 
respective complexes was measured by gel 
filtration analysis exactly as described (27). 

were mixed with cyclin E only a small 
fraction of the Cdc2 protein stably associ­
ated with cyclin E (Fig. 5C). Both the 
cyclin E-Cdc2 and cyclin E-Cdk2 com­
plexes were active kinases (Fig. 5, C and D) 
(23). Although the simplest explanation 
for these results is that the affinity of cyclin 
E for Cdk2 is greater than its affinity for 
Cdc2, other explanations remain possible. 

The evidence that cyclin E functions 
during the Gx phase of the human cell cycle 
can be summarized as follows: Cyclin E can 
perform the Gx functions of the yeast CLN 
proteins; it can complement mutations in 
the yeast CLN genes (3, 5). Furthermore, 
cyclin E in combination with either human 
Cdc2 or human Cdk2 can rescue yeast 
strains that are mutated for both CLN and 
CDC28 function (3). We found that cyclin 
E associated with the Cdk2 protein kinase in 
human cells. The activity of the cyclin 
E-associated protein kinase, the abundance 
of the cyclin E protein, and the abundance 
of the cyclin E-Cdk2 complex were maximal 
during late Gx and then declined as cells 
progressed through S, G2, and mitosis. Ac­
tivity of this kinase was also absent from cells 
that had exited the cell cycle and differen­
tiated or become quiescent. In contrast to 
cyclin E, the cyclin A protein and cyclin 
A-associated kinase activities are not de­
tectable until S phase starts (7, 8). These 
actions of cyclin E during Gx suggest that its 
physiological function precedes the S phase 
role of cyclin A (24). As a direct test of this 
hypothesis we have found that constitutive 
expression of cyclin E diminishes the growth 
factor requirements for proliferation of hu­
man cells and accelerates progression 
through the Gx phase of the cell cycle (25). 
Our results offer further evidence that in 
eukaryotes assembly of a cyclin-Cdk com­
plex is a critical step in the biochemical 
pathway that controls cell proliferation dur­
ing the Gx phase of the cell cycle. 
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Trypsin-Sensi tive, Rapid l nactivation of a 
Calcium-Activated Potassium Channel 

Christopher R. Solaro and Christopher J. Lingle* 
Most calcium-activated potassium channels couple changes in intracellular calcium to 
membrane excitability by conducting a current with a probability that depends directly on 
submembrane calcium concentration. In rat adrenal chromaffin cells, however, a large 
conductance, voltage- and calcium-activated potassium channel (BK) undergoes rapid 
inactivation, suggesting that this channel has a physiological role different than that of other 
BK channels. The inactivation of the BK channel, like that of the voltage-gated Shaker B 
potassium channel, is removed by trypsin digestion and channels are blocked by the 
Shaker B amino-terminal inactivating domain. Thus, this BKchannel shares functional and 
possibly structural homologies with other inactivating voltage-gated potassium channels. 

Calcium-activated K+ channels provide a 
link between elevations of cytosolic Caz+ 
and bembrane excitability (1). The physi- 
ological functions of different types of 
Ca2+-activated K+ channels are thought to 
reflect intrinsic differences in kinetics of 
activation, voltage dependence, and Cazf 
sensitivity (2). However, at a given mem- 
brane potential, Caz+-activated K+ chan- 
nels are, in general, thought to function as 
persistent sensors of the submembrane 
Ca2+ concentration (2, 3). Here, we report 
that a large conductance, voltage- and 
Caz+-activated K+ channel, often termed 
the BK channel (4), can undergo rapid and 
virtually complete inactivation, suggesting 
a new physiological role for this channel 
distinct from that of noninactivating BK 
channels (5) .  Although the relation be- 
tween BK channels and the family of volt- 
age-gated K+ channels is not known, BK 
channel inactivation and inactivation of 
some voltage-gated K+ channels (6-8) 
share a number of striking similarities. 
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Unlike most other BK channels (3), BK 
channels (275 ? 9 pS; mean + SD; n = 6) 
in rat adrenal chromaffin cells undergo rap- 
id inactivation (Fig. 1). The cytoplasmic 
face of excised, inside-out membrane 
patches (9) containing BK channels was 
exposed to saline containing a fixed con- 
centration of calcium ([Caz + ],). We acti- 
vated BK channels by stepping the patch 
~otential  from -40 to +60 mV for 680 ms 
every 3 s. After opening in the presence of 
5 yM [Caz+],, BK channels inactivate be- 
fore the end of the voltage step (Fig. 1A). 
Single-channel openings were not observed 
when the patch was bathed in a Caz+-free 
solution (Fig. 1B). Ensemble averages gen- 
erated from idealized single-channel records " 
show that during the voltage step the prob- 
ability of channels being open (Po) rises and 
then decays with a time course reflecting 
single BK channel activation and subse- 
quent inactivation (Fig. 1C). Consistent 
with effects of tetraethylammonium (TEA) 
on other BK channels ( lo),  1 mM TEA 
applied to an outside-out patch inhibited 
more than 90% of the single-channel en- 
semble current (Fig. ID), whereas 50% 
inhibition was observed between 200 and 
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