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Experiencing and Perceiving Visual Surfaces 
Ken Nakayama and Shinsuke Shimojo 

Atheoretical framework is proposed to understand binocular visual surface perception based 
on the idea of a mobile observer sampling images from random vantage points in space. 
Application of the generic sampling principle indicates that the visual system acts as if it were 
viewing surface layouts from generic not accidental vantage points. Through the observer's 
experience of optical sampling, which can be characterized geometrically, the visual system 
makes associative connections between images and surfaces, passively internalizing the 
conditional probabilities of image sampling from surfaces. This in turn enables the visual 
system to determine which surface a given image most strongly indicates. Thus, visual 
surface perception can be considered as inverse ecological optics based on learning through 
ecological optics. As such, it is formally equivalent to a degenerate form of Bayesian 
inference where prior probabilities are neglected. 

W h e n  we see objects in the world, what 
we actually "see" is much more than the 
retinal image. Our perception is three-di- 
mensional (3-D). Moreover, it reflects con- 
stant properties of the objects and the 
environment, regardless of changes in the 
retinal image with varying viewing condi- 
tions. How does the visual system make this 
possible? 

Two different approaches have been ev- 
ident in the study of visual perception. One 
approach, most successful in recent times, 
is based on the idea that perception emerges 
automatically by some combination of neu- 
ronal receptive fields. In the study of depth 
perception, this general line of thinking has 
been supported by psychophysical and phys- 
iological evidence. The "purely cyclopean" 
perception in the Julesz random dot stereo- 
gram (1) shows that depth can emerge 
without the mediation of any higher order 
form recognition. This suggested that rela- 
tively local disparity-specific processes 
could account for the perception of a float- 
ing figure in an otherwise camouflaged dis- 
play. Corresponding ele~troph~siological 
experiments with single cell recordings 
demonstrated that the deoth of such stimuli 

however, "perceptual inference" theories 
have not been successfully linked to physi- 
ological findings, and they are not easily 
distinguished from other theories of mental 
processes, including those that attempt to 
account for thinking and reasoning. 

In this article, we argue strongly for the 
importance of inference but provide the 
beginnings of what we think is a low-level 
mechanistic explanation of how such infer- 
ences could be learned. We argue that the 
observer's experience of optical sampling 
during locomotion provides a key to under- 
stand what will be perceived later on. 

Our domain is stereoscopic vision, com- 
monly thought to be dictated by early, 
prewired, local mechanisms. Instead, we 
consider stereopsis to be an example of 
surface representation, not obviously linked 
to currently understood properties of visual 

neurons (5) or to higher stages of object 
recognition. 

Julesz's random dot stereogram defined 
much of the subsequent work in the field of 
binocular stereoosis. Ever since. most visual 
scientists assumeh, either explicitly or implic- 
itly, that stereopsis depends most critically on 
the solution to the "matching" problem. This 
is indeed an imoortant and difficult ~roblem 
because the rich local texture of random dot 
stereograms requires that the visual system 
must find the correct binocular match of 
individual points in the face of numerous 
possible "false matches" (1, 6, 7). 

Random dot stereograms, however, are 
not entirelv re~resentative of the local de- , & 

tails of everyday scenes. Such dense tex- 
tures occur onlv occasionallv in natural 
images, and some scenes contain large re- 
gions that are effectively untextured. 
Whereas human perceptual systems correct- 
ly interpret such scenes, current models, 
which were originally designed to handle 
densely textured stereograms, do not (8). 
Thus, we think it important to examine 
how the visual system handles image re- 
gions where texture is largely absent. 

Failure of Depth interpolation in 
Untextured Stereograms 

Note the stereogram in Fig. 1A and consid- 
er the binocular disparity information avail- 
able (9). Because this cross has no interior 

Fig. 1. Case 1 . (A) + Cross stereogram. 
Because the outer 
edges of the hori- 
zontal limb of the 
cross have crossed 
binocular disparity, 

could be coded by neurons in the visual these edges should 

H H be seen in front. cortex, receiving input from the two eyes Depths of the untex- 
(2). In contrast to this more modern ap- tured interlor regions 
proach, there exists an older tradition, I1 I I I I of the cross are not 
which asserts that perception is inferential, specified by binocu- 
that it can cleverly determine the nature of I I I I I I lar disparity. (6) Re- 
the world with limited image data. Starting I I I I I I duced line stereo- 
with Helmholtz's unconscious inference (3) gram having the 
and with more recent formulations such as same disparity infor- 

Gregory's "perceptual hypotheses," this ap- mation as that contained ~n (A). (C) Perceived surface 

proach stresses the importance of problem D configuration predicted from lhnear lnterpolatlon of dis- 
parity information. (D) Perceived surface configuration 

solving in the process of seeing (4). So far, reported by human observers. (In these and in all other 

0 
stereograms, three binocular images are presented 
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texture, only the bounding contours are 
available to convey binocular disparity in- 
formation. Moreover, because binocular 
dis~aritv is not available from the horizon- 
taliy oiented contours of the figures, verti- 
cally oriented contours provide the only 
source of horizontal disparity information. 
We have emphasized this point by construct- 
ing a partial stereogram having exactly the 
same disparity information as the cross. It 
contains only vertical lines (Fig. 1B). 

Given this paucity of local disparity infor- 
mation in the whole figure, one might ask 
how depth gets assigned to the interior por- 
tions of the figure where disparity is not 
explicitly defined. Classical stereopsis makes 
no specific prediction as to the depth of these 
untextured regions. Yet, the least arbitrary 
assumption would be that the perceived depth 
of given positions in an untextured region is a 
simple linear interpolation between points 
having a defined disparity (1 0). 

The ends of the horizontal limb of the 
cross have crossed disparity. That should 
indicate that these contours are nearer to the 
observer than to the contours de& the 
vertical limb (I I). Assuming depth interpc- 
lation for the stereogram in Fig. lA, we 
might expect a simple continuity of depth 
from the center of the cross (seen in back) to 
the ends of the horizontal limbs (seen in 
front). The observer should see a vertical bar 
in back flanked by horizontal "wings" that 
are slanted toward the observer (Fig. 1C). 

We have shown this stereogram (Fig. 1A) 
to several hundred observers, and only a tiny 
minority observe what we have just outlined. 
Instead, the most frequently y n  cordigura- 

tion is that of a horizontal bar in front of a 
vertical bar (Fig. ID). In keeping with the 
perception of a straight horizontal bar in 
front, observers also see a subjective occluding 
contour, which is not present in the image 
itself but which perceptually segregates and 
completes the bar in front (9, 12). 

In our second stereoscopic demonstra- 
tion (Fig. 2), we again show that the visual 
system violates the expectation of simple 
Merpolation by allowing a break in the 
perceived surface pattern. This demonstra- 
tion also illustrates a aualitativelv different 
phenomenon, the perception of transparen- 
cy, which is accompanied by color spread- 
ing into otherwise uncolored regions (9, 
13). In this example (Fig. 2A), the viewer 
observes a set of four bipartite bars, divided 
into red and white regions against a black 
backmound. The ends of the bars are in the 
zero >isparity plane, and the dividing line 
between the regions has crossed disparity. 
Simple interpolation theory would predict 
that this edge would be seen in front and 
that the other two edges would be seen in 
back, forming a folded surface (Fig. 2B). 

What is seen, however, is qualitatively 
different. Instead of seeing a set of folded 
surfaces (Fig. 2B), each visible face of 
which recedes back from the viewer, one 
usually sees this configuration as two dis- 
connected surfaces, one transparent in 
front, the other opaque in back, each of 
which does not recede but is frontoparallel 
to the observer (Fig. 2C). This transparent 
surface appears to "complete" in front and 
merge as a single surface, which is in front 
of all four bars. Furthermore, it is "con- 

tained" by subjective contours, which 
bound the color that spreads into the black 
region (Fig. 2C). 

Image Ambiguity in Stereograms 

Depth interpolation failed to account for 
what is seen. Instead, it appears as if the 
visual system reached a conclusion with only 
the scantiest evidence. Is what is perceived 
consistent with the binocular image data? 

In case 1 (Fig. I), the perception of 
surface breakage, although not predicted 
from depth interpolation, is nonetheless 
consistent with the disparities presented to 
the observer. A real-world bar configura- 
tion as in Fig. ID, as well as that in Fig. lC, 
could have given rise to the disparities seen 
in the stereogram. The same is true for case 
2. A transparent red surface lying in front of 
white bars (Fig. 2C), as well as folded 
surfaces (Fig. 2B), could have given rise to 
the disparities seen in Fig. 2A. Thus for 
both stereograms presented, the 3-D inter- 
pretation is ambiguous. The observer is 
presented with image data that can be 
interpreted in more than one way. 

The issues raised here are not entirely 
new. Both traditional and modem students 
of visual perception have noted the ambi- 
guity of the visual image. For example, it 
has been pointed out that, when one is 
presented with an image in the form of a 
triangle, there is an infinite number of 
triangles in space that could have given rise 
to this image (14). More recently, in stud- 
ies of computational vision, it has been 
noted that vision is ill-posed in that the 

ng. 2. Case 2: (A) Bipartite stereogram where the center line in each of the surface configuration reported by human observers: a single frontoparal- 
four bars has crossed disparity and should be perceived in front of the ends lel transparent surface in front of four bars in back. If this stereogram, as 
of the individual bars. (B) Perceived surface in depth predicted by linear well as that shown in Fig. 6A, is viewed in the reverse configuration (with 
interpolation of disparity information: four folded sheets. (C) Perceived right and left eye views exchanged), the red region will look opaque. 
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information available in the image by itself 
is insufficient to recover the structure in the 
real world (1 5) .  

Therefore, simply checking to see wheth- 
er the image array is consistent with a given 
perceptual interpretation is not sufficient to 
permit one to decide which interpretation is 
true. Nor can one apply a simple rule such as 
depth interpolation among disparities to 
reach the perceived solution. 

Ecological Optics and the 
Importance of Viewing Position 

Rather than starting with an image and 
thinking about automatically reconstruct- 
ing the surface by interpolation, we advo- 
cate a conceptual shift, arguing that the 
problem can be best understood from the 
perspective of ecological optics. As dis- 

cussed by Gibson (16), we must remember 
that, when one is viewing surfaces in the 
world, the vantage point of the viewer is 
rarely stationary. The observer locomotes, 
and new sets of image samples continuously 
arise. Thus, there is of necessity a one-to- 
many mapping from the physical layout of 
surfaces to the image. For example, in Fig. 
3A we indicate three different sets of sur- 
faces, S1, S2, and S3, each of which poten- 
tially gives rise to more than one image as a 
consequence of the viewer taking differing 
vantage points. 

If this mapping were literally as de- 
scribed above, the task of the visual system 
would be relatively easy: given a visual 
image, say, I,, it would simply designate the 
corresponding surface S ,. What makes this 
task more difficult is the fact that one image 
arising from one surface can also arise from 

Fig. 3. Mapping of surfaces to 
images as defined by ecological 
optics. Classes of surface struc- 
ture in the real world (S,, S,, and 
S,) can give rise to sampled im- 
ages ( I , ,  I,, . . .) as an observer 
assumes differing vantage points. 
(A) Image sampling without stim- 
ulus ambiguity where each image 
class is tied to only one surface 
configuration. (B) Image sam- 
pling with stimulus ambiguity 
where some image classes (I, 
and I,) can arise from more than one surface. (C) Specific example of line, square, and cube, where 
thick and thin arrows indicate generic and accidental samplings, respectively. 

Transparency 

# 
Fig. 4. Changes of image as the location of the observer's vantage point changes. Real-world surface 
structure is illustrated on the left, while changes of views with differing vertical elevations are shown on 
the right of each figure. (A) For the cross with wings bent. (B) For the horizontal bar in front of the vertical 
bar without a bend. (C) For the prism-like folded surfaces. (D) For a transparent surface in front. 

a variety of other surfaces (Fig. 3B). So the 
mapping is not only one-to-many, it is also 
many-to-one. 

To illustrate, consider a set of various 
real-world objects: a line, a square, and a 
cube, labeled S1, S2, and S3, respectively, 
in Fig. 3C. Depending on the location of 
the observer's vantage point, a line can give 
rise to an image of a line or a point; 
similarly a square can give rise to an image 
of a auadrilateral or a line: and finallv a 
cube can give rise to images of polygoLal 
figures having either one, two, or three 
faces. Thus, changes in the visual image 
occasioned by differing viewer positions can 
be summarized in terms of particular topo- 
logical classes of images as initially proposed 
by Koenderink and van Doom (1 7). 

Now, think of the various viewing posi- 
tions that could have given rise to each of 
these images. If the observer were to assume 
a random position in space around the cube, 
image l5 (three faces) would be much more 
probable than image I4 (two faces), which in 
turn would be much more probable than 
image I3 (one face). Furthermore, as viewer 
distance is increased, this inequality would 
be accentuated, with the likelihood of three 
faces tending toward unity in the limit and 
the likelihoods of two faces and one face 
tending toward zero. Thus those viewing 

0 - 
positions in space where I5 (three faces) is 
encountered are called "generic" vantage 
points, with I5 designated as a generic image 
(18). I4 and I3 are correspondingly called 
"accidental" images, and the viewing posi- 
tions in space where they are encountered 
are called accidental vantage points. When 
one is confronted with image 12, it would 
make more sense if one sees a line rather 
than a square. Similarly, when confronted 
with image 13, one would see a square in- 
stead of a cube. It is only when confronted 
with I5 that one would see a cube. 

With these ideas in mind, we return to 
our untextured stereograms, starting with 
the cross in Fig. 1. The surface arrangement 
that would result from linear depth interpo- 
lation is the vertical bar flanked by the 
horizontal wings. Let us apply ecological 
o~ t i c s  to understand how these real-world 
surfaces might give rise to images sampled. 
If an observer were to view the configura- 
tion with the horizontal wings, he could 
encounter the binocular image in question 
(I,) but only from a restricted set of vantage 
points (Fig. 4A). The observer is required 
to be at the same vertical level of the 
surfaces, neither above nor below, other- 
wise the horizontal wings would no longer 
appear collinear (19). As a telling compar- 
ison, consider the horizontal bar in front of 
the vertical bar (Fig. 4B). Here all images 
(I4, 15, and I,) arising from this pair of 
surfaces are qualitati;iely the same as 12. 
Instead of arising from just one particular 
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Fig. 5. lmage sampling matrices for (A) cube versus square, (B) cross versus bent wings, and (C) 
fold versus transparency vrans.). Potential surface sets in the real world are denoted at column 
headings (S, and S,), and possible images are denoted by row headings ( I , ,  I,, . . .). The likelihood 
that a given surface will give rise to a given image is categorized as either generic and very likely 
(G), accidental or rare (A), or impossible (0). 

viewing position, the image in question can 
arise from a range of elevations. The image 
sampling process is different in each case, 
even though the same image can arise from 
two different surface layouts. The sampling 
is accidental for the situation depicted in 
Fig. 4A (bar with wings), whereas it is 
generic for the case shown in Fig. 4B 
(crossed bars). 

The same analysis applies to the stereo- 
grams shown in Fig. 2. The surface ar- 
rangement that is predicted from linear 
depth interpolation is depicted as Fig. 4C 
(folded surface). The image I, could arise 
from a folded surface but only from a 
restricted set of vantage points. The ob- 
server is required to be just at the same 
vertical level of the surfaces, neither 
above nor below, otherwise the horizontal 
boundaries would no longer remain collin- 
ear. In contrast, in the case of the trans- 
parent surface in front of a white bar on a 
black background (Fig. 4D), all images 
sampled (I,,, I,,, and Ill) are qualitatively 
the same. Thus in this case, changes in 
viewing position have little effect, and a 
sampled image, which is categorically 
identical to I,, can arise frequently. 
Again, there is a large difference in image 
sampling between the two surface layouts: 
In the first case the image I, is accidental; 
in the second the same image is generic. 

The Principle of Generic 
lmage Sampling 

One of the major themes of this paper is 
that the observer's experience of optical 
sampling during locomotion provides a key 
to understanding what will be perceived 
later on. Here we develop this idea by 
applying the principle of generic image 
sampling. The principle can explain most 
of our findings and others to be described: 
When faced with more than one surface inter- 
pretation of an image, the visual system as- 
sumes it is viewing the scene from a generic, not 
an accidental, vantage point. 

This principle is not entirely new. It has 
been one of the core assumptions of ma- 

chine vision algorithms (20) as well as a 
theory of human object recognition (21). 
However, it can also be used to explain 
psychophysical phenomena that are gener- 
ally thought to be part of early visual 
processing, namely, the encoding of depth 
in simple stereograms. 

To develop this line of thinking in a 
more general framework, we summarize the 
relations between surfaces and images in 
the form of contingency matrices, which 
indicate the likelihood of obtaining images, 
eiven certain real-world surfaces. To illus- " 

trate, consider the two by three array in Fig. 
5A. On top are possible sets of surfaces in 
the real world: a square and a cube. Along 
the side are the image classes that one 
might encounter (containing one, two, and 
three faces, respectively). In this array, we 
label the likelihood of images as either 
likely (G, generic), unlikely (A, acciden- 
tal). or im~ossible (0). , , ~, 

So to enumerate the possible images that 
can be sam~led from a sauare. we examine . . 
the cells in the first column corresponding 
to images I,, 12, and I,. Only I, could have 
arisen from a generic vantage point. As 
such, it is labeled as G. The other two 
images (I2 and I,) could not have arisen, 
and these cells are thus labeled 0. The 
second column outlines the possible images 
that could arise from a cube. Images I, and 
I, can arise only from privileged viewpoints 
and are thus accidental and labeled A. I, 
can arise from many viewpoints and is thus 
generic and labeled G accordingly. Apply- 
ing the principle of generic image sampling 
is now straightforward. When 1, (the single 
face) is presented, it is clearly a generic 
view of S, (the square) and, as such, a 
square is perceived. S2 (the cube) is not 
perceived because 1, is an accidental view of 
it, not a generic one. 

Having introduced these contingency 
matrices with familiar objects, we can now 
provide a framework to understand the two 
stereograms presented. At least two real- 
world surface configurations could give rise 
to the cross (Fig. 5B, I,), either the bent 
wings or the horizontal bar in front of the 

vertical bar. When presented with the bin- 
ocular image of the cross (I,), the observer 
sees the horizontal bar S, and not the hori- 
zontal wings S, because I, is the generic view 
of the bar and not of the wings. It is only an 
accidental view of S,. For the case of the 
folded surface versus transparency, the expo- 
sition is similar and is depicted in Fig. 5C. 
Thus, the visual system deals with stimulus 
ambiguity by picking the interpretation 
based on the generic sampling assumption. 

To provide an even stronger case for the 
principle of generic image sampling, we add 
a third demonstration where the identical 
crossed bars of Fig. 1 can give rise to an 
entirely different global configuration, that 
of a transparent disk. All that is required is 
that the same cross be embedded in a new 
context. Consider the stereogram in Fig. 6. 
The inner red portion of this figure is 
geometrically identical to the stereogram 
shown in Fie. 1. Thus. the ends of the - 
horizontal limbs of the cross have crossed 
disparity with respect to the vertical limbs 
and should be seen as closer. However, this 
red cross is now embedded in a larger white 
cross that has zero disparity. 

What should we expect to see? We 
already know from Fig. 1 that the familiar 
bent bar configuration (Fig. 6B, S1) is not 
seen. Instead, one sees the cross as a hori- 
zontal bar in front of a vertical one. As 
such, we might expect to see this same 
configuration embedded in the middle of a 
white outer cross (Fig., 6B, S2). 

The actual perception of this stereogram 
is totally different from either of these 
ex~ectations (22). What is seen is a trans- 
pa;ent red disk hovering in front of a white 
cross (Fig. 6B, S,). SO why do we see a 
transparent disk when earlier we just saw a 
horizontal bar in front of a vertical one in 
an essentially identical configuration? 

Again, we appeal to the principle of 
generic image sampling, arguing that the 
visual system's preference is based on the 
likelihoods of images arising from different 
sets of surfaces (Fig. 6B). For the cases of 1, 
and I,. the task for the visual svstem is easv >. 
because only one surface interpretation is 
possible for each (see horizontal arrows). For 
the case of I, (Fig. 6B), many surface inter- 
pretations are possible, and here the princi- 
ple of generic image sampling reveals its 
predictive power. I, is only an accidentally 
sampled image of S, and S2, whereas it is a 
generically sampled image of S,. Therefore, 
the transparent disk (S,) has priority over $, 
and S2 as a surface interpretation of I,. 

Although this third case provides pow- 
erful support for the generic sampling idea, 
it is even more revealing if we focus more 
closely on specific local aspects of the con- 
figurations, searching for local primitives 
upon which surface perception may de- 
pend. Transparency is seen in cases 2 and 3. 
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Can we identdy a local feature common to 
both yet absent from the other case? Indeed, 
each has a specific type of stereoscopic 
T-junction. These are shown inside of the 
circles of Fig. 7, A and B, which reproduce 
relevant portions of case 2 and case 3. The 
stem of the T has a crossed disparity in 
relation to neighboring contours, and the 
transparent side of the stem is darker. 

Monocularly viewed T-junctions have 
long been considered as evidence for occlu- 
sion, with the top of the T interpreted as 
occluding the stem (3, 23). No explicit 
formulation, however, has been made for 
the stereoscopic T-junctions, particularly 
where the stem is in front. In contrast to the 
monocular version. such a iunction is in- 
compatible with occlusion because the top of 
the T cannot act as an occludine contour if - 
the stem is in front of it. Yet, the principle of 
generic image sampling can apply to this 
local configuration in the same way as we 
have applied it to whole figures. For exam- 
ple, consider two sets of stereoscopic junc- 
tions (Fig. 7, C and D), where one of the 
lines, L3, has crossed disparity and is thus 
coded as in front. In Fig. 7D, two of the lines 
forming the intersection (L1 and L2) are 
collinear, whereas in Fig. 7C they are not. 
With ecological optics we can determine 
how likely it is that each image junction 
could arise, given an overlying transparent 
or a folded opaque surface. The T-junction 
in Fig. 7D could have arisen frequently from 
a transparent surface in front but not from a 
folded surface. As such, it is a generic image 
junction for a transparency and an acciden- 
tal image junction for an opaque fold. On 
the other hand, the junction in Fig. 7C is a 
generic image for a fold. This analysis ex- 
plains why the seemingly small step of em- 
bedding the smaller cross in a larger one 
leads to a dramatic change in surface percep- 
tion. By adding an outer limb, which is 
collinear to the inner cross, we introduced a 
powerful local feature, a stereoscopic T- 
junction, which was essentially incompati- 
ble with opacity. 

Role of Visual Experience 

When the observer locomotes in the world, 
new images arise (16) with each class of 
image corresponding to a certain range of 
vantage points that the observer can assume 
in space (17). Thus, given a particular 
surface layout S,, the probability that a 
class of image I, will arise can be plausibly 
estimated from geometry, from considering 
the spatial range of vantage points under 
which a given image class is sampled, di- 
vided by the totality of possible vantage 
points. This is roughly equivalent to the 
quotient of two solid angles: the numerator 
being the solid angle under which a given 
image class is sampled, the denominator 

defining the solid angle from which the 
surface can be viewed. Thus. the viewer's 
experience can be expressed as a condition- 
al probability P(1, ) s,), the probability of a 
given image I,, given a real-world surface 
layout S, (Fig. 8). 

We may formalize our analysis in a more 
general contingency table (Fig. 8). For each 
column, identified by a surface S,, the 
likelihoods or conditional probabilities of 
all possible image samplings (I, . . . I,) are 
listed, thus forming the exhaustive sample 
space of possible images. This analysis sum- 
marizes the totality of image sampling for 
the mobile observer. We areue that - 
~ ( 1 , )  S,) is represented in the nervous sys- 
tem as an associative strength, between a 
surface and a visual image. 

From this associative strength to percep- 
tion is a short step, for the task facing the 
visual system is inverse ecological optics. 
Given an image I,, it must decide which 
surface structure is the best candidate for 
what actuallv exists in the external world. 
Then, given an image I,, the probability of 
S, being the cause of I, can be determined 
from a comparison of these learned condi- 
tional probabilities, P(1,I S,), P(1, I S2), 
P(1,) S3), or associative strengths. In terms 
of our matrix in Fig. 8, this passive process 
acts as if it selects the cell havine the u 

highest probability in the same row, there- 
by finding the appropriate surface. 

If we think of perceptual learning, the 
conditional probability terms assume spe- 
cial importance as they provide an oppor- 
tunitv for us to estimate visual experience 
simply from geometry. We suggest that 
these image sampling probabilities could be 
learned passively as the moving organism 
assumes essentially random positions with 
respect to real surface configurations. It 
follows, therefore, that the principle of 
generic image sampling emerges from this 
associative process. 

The critical cues. such as collinearitv. , . 
binocular disparity, and luminance con- 
trast, are all local and primitive visual 
properties, the kind of selectivities com- 
monly observed at early stages of the cor- 
tical visual processing. This implies that 
inverse ecological optics could be imple- 
mented in a strictly bottom-up, retinotopic 
representation, not requiring "higher or- 
der" inference. This view goes against the 
classical notion in psychology that percep- 
tion is a form of problem solving or a 
hypothesis-testing process under strong top- 
down cognitive influence (4). Our views 
are perhaps closer to Helmholtz's uncon- 
scious inference (3), albeit at a retinotopic 
stage of representation, because we suggest 
that inferencelike processes can be con- 
structed through associative learning in ear- 
ly vision without appealing to a homoculus 
or detectivelike processing. 

Image Sampling Probability 
Versus Prior Probability 

Inverse ecological optics based on image 
sampling probabilities are similar in part to 
Bayesian reasoning, as formulated in the 
Bayes theorem 

where image sampling probabilities are de- 
noted as conditional probabilities P(1, I S,) 
and the posterior probability of surface S, is 
denoted as P(S, I I,). The major difference 
between the Bayes theorem and our formu- 
lation, Eq. 2 (Fig. 8, matrix), is our omis- 
sion of prior probabilities or base rates p(S,) 

P(Sn I 1,) = P(1m I s I 11 
[~(lm I S1) + P(Im I S2) + . . . P(Im I S")1 

(2) 
Conceivably, this term could be added to 
our framework, rendering it consistent with 
a full Bayesian approach. In terms of our 
matrix, each column could be multiplied by 
a factor proportional to the base rate of each 
surface structure to obtain the posterior sur- 
face probabilities described in Eq. 1. In 
terms of a neuraI network represented by 
such a matrix, base rates could be incorpo- 
rated by increasing excitation along the cor- 
responding vertical columns in proportion to 
prior probability. Yet, for many reasons, we 
do not think that this strategy is appropriate 
for the visual perception of surfaces. 

First, in contrast to the learning of 
image sampling probabilities, the estima- 
tion of prior probability is problematic. 
Let us consider this in the context of 
transparent surfaces. Because transparent 
surfaces are generally infrequent, one 
would need a large period of time over 
which to obtain a sufficiently large set of 
samplings for a reliable measure of their 
prior probability. In addition, the frequen- 
cy of transparent surfaces can change over 
varying environmental contexts, suggest- 
ing that a single general estimate of prior 
probability is likely to be meaningless. 
This necessitates that the estimate be 
obtained in varying environmental con- 
texts and that these contexts be tagged for 
future use. Moreover, the fact that prior 
probabilities for transparency are likely to 
be small, combined with the fact that the 
numerator in Eq. 1 is a product, makes 
Bayesian decisions extremely unstable, 
particularly when estimates of prior prob- 
abilities are not immune to noise. 

Even if such an estimate were made and 
could be assumed to be reliable and valid, it 
is not clear that such knowledge actually 
biases our perception app~opriately. Many 
studies have shown that perception is large- 
ly impervious to prior knowledge, that 
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Fig. 6. Case 3: (A) Stereogram where the inner red cross is geometrically are listed in rows. S,, &, and S, refer to three possible surface configu- 
identical to that shown in Fig. 1A and is embedded in a larger white cross rations that could have given rise to this binocular image. I , ,  I,, and l3 refer 
having zero disparity. (B) Image sampling matrix for this case. As in Fig, to images that could be possibly sampled. 
5, surface classes are illustrated in columns, and sampled image classes 

Fig. 7. (A and B) Local 
stereoscopic T-junc- ,A , ; ,bh tions embedded in the '1 

cologbl 

previous stereograms 
op- 

(Figs. 2 and 6, respec- 
tively). (C) Generic ste- 12 

reoscopic image sample from a folded surface. (D) Generic stereoscopic image sample from 
surface structure with transparency. Thick line, 5, has crossed disparity and is coded as in front of 
L, and b. 

'm 

seemingly compelling counterevidence at 
the cognitive level does not destroy strong 
perceptual illusions and other perceptual 
phenomena. Kanisza, for example, has 
shown many cases in which local perceptual 
rules essentially dominate our cognitive un- 
derstanding of a scene (24). So in broad 
agreement with others (16, 25), we suggest 
that the visual perception of surfaces is an 
autonomous process, minimally subject to 
object-specific knowledge about the world. 
Thus, our proposal is similar to a degenerate 

/ 
form of Bayesian inference where prior prob- Inverse ecdoaical optics (perceptlon) - .  

are unknown, set to and Fig. 8. Generalized form of the image sampling 
ignored. This directly corresponds to inverse matrix. 
ecological optics as we have outlined it in 
the matrix in Fig. 8 (26, 27). 

the representation of surfaces themselves. 
Need for Perceptual Categorization By designating S ,  as a real-world surface, we 

have glossed over the fact that it too must 
L. 

For simplification, an important step has have a neural representation. In particular, 
been missing in our discussion so far. We we need to ask what kind of neural organi- 
have suggested that sampled images can be zation emerges for the perception of surfaces 
associated with surfaces, not mentioning so that they are seen as either connected, 
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folded, disconnected, transparent, or opaque, 
among others. For example, what gives trans- 
parency its characteristic appearance, identi- 
fiable even from opaque patches in a stereo- 
gram (Figs. 2 and 6)' 

Because we have no specific data to 
address this issue directly, we can only 
speculate. Consider the various distinctive 
properties of images that are related to 
surface transparency. This would include, 
say, stereoscopic T-junction, contrast rela- 
tions that satisfy Metelli's rule (28), simul- 
taneous depth coding from a front and a 
back plane (22), and semispecular reflec- 
tion at the surface. Given the associative 
power of theoretical neural networks (29), 
we hypothesize that, if these properties 
occur simultaneously when the observer 
locomotes in front of a transparent surface, 
an associative linkage is formed across these 
features. Then later, when an image con- 
tains a subset of these co-occurring features, 
the visual system can recall the whole 
pattern of features. This is presumably why 
we see transparency in our stereograms even 
though no transparency exists in the literal 
sense. Most important for our present dis- 
cussion, it provides a plausible cluster of 
neural connections to represent a surface 
that can then be associated with specific 
image classes sampled (30, 3 1) .  
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Precursors to Large Northern 
~aiifornia Earthquakes 
Paul G. Silver and Nathalie J. Valette-Silver 

During the period 1973 to 1991 the interval between eruptions from a periodic geyser in 
Northern California exhibited precursory variations 1 to 3 days before the three largest 
earthquakes within a 250-kilometer radius of the geyser. These include the magnitude 7.1 
Loma Prieta earthquake of 18 October 1989 for which a similar preseismic signal was 
recorded by a strainmeter located halfway between the geyser and the earthquake. These 
data show that at least some earthquakes possess observable precursors, one of the 
prerequisites for successful earthquake prediction. All three earthquakes were further than 
130 kilometers from the geyser, suggesting that precursors might be more easily found 
around rather than within the ultimate rupture zone of large California earthquakes. 

O n e  of the basic auestions in seismolom is ", 

whether earthquakes have an observable 
preparation phase, known as a precursor. This 
issue is not only central to our understanding 
of the earthauake urocess but it is also a 
prerequisite for successful earthquake predic- 
tion. One important approach to this problem 
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versity of Maryland, College Park, MD 20741 

is the measurement of crustal deformation: in 
the far field (more than a few fault lengths 
away) by long-period seismometers (1, 2) and 
in the near field by strainmeters (3-5). In 
order to observe precursory signals with dura; 
tions longer than about an hour, however, 
measurements must be made in the near field, 
because such signals will not radiate as seismic 
waves. This major advantage to near-field 
observations is partially offset by the require- 
ment that the instruments must be near the 
impending earthquake: This means, paradox- 
ically, that the location of a future earthquake 
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