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acts with tentoxin (15). This system re- 
quires addition of p subunit and trace 
amounts of a subunit for restoration of 
ATPase activity (1 6). The external source 
of a subunit was, in all cases, from lettuce, 
a tentoxin-sensitive species (1 7). Heterol- 
ogously reconstituted chromatophores 
proved sensitive to tentoxin when purified 
B subunit from a tentoxin-sensitive s~ecies 

Tentoxin Sensitivity of Chloroplasts Determined by [Nicotiana line 92 (18) lettuce] 

Codon 83 of P Subunit of Proton-ATPase was used. However, chromatophores were 
resistant to > 100-fold higher concentra- 
tions of tentoxin when purified P subunit 

Adi Avni,* James D. Anderson,t Neta Holland, from a tentoxin-resistant species [Nicotiana 

Jean-David ~ochaix, Zippora Gromet-Elhanan, Marvin ~de lman tabacumvar- Xanthi (l8)1 was used (Fig- 1)- 
Thus. the resDonse of the reconstituted 
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Tentoxin is a naturally occurring phytotoxic peptide that causes seedling chlorosis and chromatophores to tentoxin depended on 
arrests growth in sensitive plants and algae. In vitro, it inhibits activity of the p subunit of the source of CF,-p. 
the plastid proton-adenosine triphosphatase (ATPase) from sensitive species. Plastid The peptide sequence identity among 
atpB genes from six closely related, tentoxin-sensitive or -resistant Nicotiana species differ CF,-p subunits from a variety of higher 
at codon 83, according to their response to the toxin glutamate correlated with resistance plants is 92 to 95% (1 9). We therefore 
and aspartate correlated with sensitivity. The genetic relevance of this site was confirmed reasoned that within a single genus, such as 
in Chlamydomonas reinhardtii by chloroplast transformation. The alga, normally tentoxin- Nicotiana [where out of 40 species tested, 9 
resistant, was rendered tentoxin-sensitive by mutagenesis of its plastid atpB gene at codon are tentoxin-resistant and 3 1 are tentoxin- 
83. Codon 83 may represent a critical site on the p subunit that does not compete with sensitive (3, 18)], CF,-P sequence varia- 
nucleotide binding or other catalytic activities. tion might be limited enough that a unique 

difference could be identified between re- 
sistant and sensitive plants. Accordingly, 
the atpB coding regions from two resistant 

Tentoxin, a cyclic tetrapeptide [cyclo L- character (9, lo) ,  may result from inhibi- (R) and three sensitive (S) Nicotiana spe- 
leucyl-N-methyl-(2)-dehydrophenyl-alanyl- tion of photophosphorylation by interac- cies [N. tabacum var. Xanthi (R), N. rustica 
glycyl-N-methyl-alanyl] ( I ) ,  is a phyto- tion of tentoxin with a specific site on the (R) , N. bigelovii (S) , N. plumbaginifolia (S) , 
toxin produced by the fungus Alternaria coupling factor (CF,) of the plastid pro- and N. tabacum line 92 (S)] were cloned, 
tenuis. The diversity of effects in a variety of ton-ATPaSe in sensitive species (1 1). were sequenced (20), and were compared 
plants suggests multiple modes and sites of Binding studies and ATPase inhibition with that of N. tabacum var. BY4 (R) (21). 
action (2). Tentoxin prevents chlorophyll kinetics show that, in sensitive species, Homology among the six genes and among 
accumulation in germinating seedlings of tentoxin binds tightly to a single site on the proteins they encode was >99% (Fig. 
some, but not all, angiosperms (3), an ef- chloroplast-encoded a or p subunits of 2). Between CF,-P of N. tabacum var. 
fect termed "chlorosis" (4). Chlorosis was CE, (12). This binding is uncompetitive Xanthi and that of N. bigelovii, only a single 
claimed to arise from interference with with respect to ATP and adenosine di- amino acid difference was found: glutamate 
transport or integration of specific nuclear- phosphate (ADP) (1 3). (E) or aspartate (D) at residue 83. All three 
coded proteins into the developing plastid We used the p-less Rhodospirillum ru- sensitive lines had D at position 83 and all 
of sensitive, but not resistant, species (5, brum chromatophore system (14) to deter- three resistant lines had E. 
6). However, tentoxin is also a potent mine which of the two CF, subunits inter- We transformed chloroplasts of Chlam- 
inhibitor of energy transfer at the terminal 
step in photophosphorylation in isolated 
plastid membranes (7) and inhibits light- Fig. 1. The effect of tentoxin on ATP hydrolysis 300- 
driven, but not adenosine triphosphate in reconstituted Rhodospirillum rubrum chro- 
(ATP)-driven, protein and RNA synthesis matophores. Photosynthetic membranes (36) 
in isolated c~~orop las t s  (8). l-hus, were prepared from Nicotiana and lettuce, and 6 . 

Xanthi (R) 

'..*------------- 4.. ........... P' 

sis, a cytoplasmically inherited chloroplast were with LiCl and mM MgATP !E d...*/... 
(76). CF, fractions were purified from the LiCl 3 200-' ""'o 
supernatant by anion-exchange chromatogra- 

A Avni. J D Anderson. N Holland, M Edelman, P ~ Y  on a fast protein liquid chromatography 
Department of Plant Genetics, Weizmann Institute of (FPLC).Mono Q column (16) to yield CF,-p 
Science, Retiovot 76100, Israel. immunologically free of CF,-a (purified-p), and .: J.-D. Rochaix, Department of Molecular Biology, Uni- a fraction containing both C F , - ~  and C F , - ~  in a 
versity of Geneva 30, Quai Ernest Ansernet, CH-I 21 1 

ratio of -1 :1 (purified-ap). Reconstitution of Geneva, Switzerland. 
Z. Gromet-Elhanan, Department of Biochemistry, p-less chromatophores was carried out as de- 
Weizmann Institute of Science, Rehovot 76100, Israel, tailed (16), with 3 pg of purified-ap from let- 

*Present address and to whom correspondence tuce~ Lettuce (S); 3 Pg of purified-p from N. 
should be addressed: Plant Molecular Biology Labo- tabacum var. Xanthi plus 0.4 pg of purified-cwp 
ratory, U.S. Department of Agriculture, Agricultural from lettuce, Xanthi (R); or 3 pg of purified-p Tentoxin (@I) 

Research Service (USDNARS) Beltsville Agricultural from N, tabacum line 92 plus 0.4 pg of purified-ap from lettuce, Line 92 (S) (30). Samples were 
Research Building Oo6' Beltsville, MD 20705, incubated with p-less R. rubrum chromatophores (14), and the specific rate of ATP hydrolysis t o n  leave from Plant Hormone Laboratory, USDA! 
ARS, Beltsville, and present address: Weed Science determined in the presence of increasing tentoxin concentration. (R) = tentoxin-resistant and (S) = 

Laboratory, USDNARS, Beltsville Agricultural Re- tentoxin-sensitive species as determined by the seedling test (37); BChl = bacterial chlorophyll, 
search Center, Beltsville, MD 20705. determined according to Clayton (38). 



ydomonas reinhardtii (22) to test the rele- 
vance of residue 83 in CFl-P as a tentoxin 
target. A chloroplast DNA fragment cod- 
ing for residues 31 to 322 of C. reinhardtii 
atpB was subjected to site-directed muta- 
genesis (23). Four amino acids were 
changed around codon 83 such that, on 
translation, the 18-amino acid stretch 
from codons 74 to 9 1 of the Chkzmydomo- 
nas gene [VRAVSMNPTEGLMRGMEV; 
(24)] would be identical to that of Nicoti- 
ana (Fig. 2). This was to minimize any 
putative conformational effects around 
residue 83 in the C. reinhardtii protein that 
might render an Asp at this position inac- 
cessible to tentoxin. Two plasmids, en- 

coding atpB, one with the codon for Glu 
at position 83 (p113-E) and the other, 
for Asp (p113-D) (2.5), were used to 
transform (26) C. reinhardtii mutant 
FUD50 (27). This mutant lacks an intact 
atpB gene, does not assemble chloroplast 
ATPase, and requires organic carbon to 
grow (28). Presumptive transformant col- 
onies were selected by growth on photoau- 
totrophic medium. Nine colonies were 
isolated after transformation with p113-E 
vector and six with p113-D. Immunoblot- 
ting after SDS-polyacrylamide gel electro- 
phoresis (PAGE) confirmed the pres- 
ence and accumulation of the CFl-P sub- 
unit (29). Thus, photoautotrophy in these 

lines is due to the reintroduction of CF,-P. 
Chlamydomo~s reinhardtii wild type 

(WT), FUD50 mutant, and transformed 
lines 38 (E) and 37 (D) were grown in 
liquid photoautotrophic medium with or 
without tentoxin. Growth of WT and line 
38 (E) was impervious to the highest con- 
centration of tentoxin used (1 -8 mM), and 
growth of line 37 (D) showed a halhhray 
inhibition concentration (IC,,) at -250 
pM (Fig. 3). The FUD50 mutant was 
unable to grow photoautotrophically, irre- 
spective of the presence of the inhibitor. 
The response to tentoxin of 47 tetrads from 
the cross 37 (D)+ x WT- was analyzed. 
Their inability to grow at 900 pM of inhib- 

Fig. 2. CF,-p amino acid sequences from six Nicotiana species (20). Chloroplast DNA from all 
Nicotiana strains was isolated (39) and was sequenced (41). The deduced amino acid sequences 
are shown. The chlorosis response of Nicotiana seedlings, from all six species, to tentoxin (20 
pglml) was determined (3, 37). R = tentoxin-resistant; S = tentoxin-sensitive. Arrow indicates 
codon 83. Line 92 (S) 

0 l 5 k % 4 J  0 1 .O 2.0 20 25 

Fig. 4. Photophosphorylation in vitro in the pres- 
ence of tentoxin. Light-driven ATP synthesis was 
carried out as described (42). Thylakoid mem- 
branes (30 pg of chlorophyll) from Chlamydom- 
onas (43) or Nicotiana (36) were incubated in (in 
mM) 60 tricine (pH 8.0), 10 NaCI, 2 adenosine 
diphosphate, 4 Na2HP0,, 2 MgCI,, 20 glucose, 
4 sodium ascorbate, 75 pM phenazine metho- 
sulfate, 1 mg of hexokinase, 1 pI of 32P (36 
Cilmmol) for 5 min in the dark and then for 3 min 
at 600 pE m-2 S-' light. We stopped ATP 
synthesis by adding 100 pI of 50% trichloroace- 
tic acid. Radiolabeled ATP was determined as 
described (36). Values were normalized to an 
activity of 100% in the absence of inhibitor. Bars 
indicate standard errors calculated from three 
repeats. The rates of ATP synthesis (micromoles 
per hour per milligram of chlorophyll) in the 
absence of tentoxin were as follows: line 38 (E) 
= 468; line 37 (D) = 431 ; N. tabacumvar. Xanthi 
= 666, Xanthi (R); N. tabacumline 92 = 605, line 
92 (S). (R) = tentoxin-resistant; (S) = tentoxin- 
sensitive. 
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itor indicates uniparental inheritance of 
tentoxin sensitivity in C. reinhardtii. 

Thylakoid membranes were isolated and 
were tested for ability to carry out light-
driven ATP synthesis in the presence of 
tentoxin. Membranes of C. reinhardtii line 
37 (D) and N. tabacum line 92 are inhibited 
by the same submicromolar concentrations 
of toxin, although not to the same extent 
(Fig. 4) (30). The origin of the high back­
ground in line 37 (D) extracts was not 
investigated. Line 38 (E) and var. Xanthi 
are resistant. 

Codon 83 of CF r(3 is a major plastome 
locus in Nicotiana (31), determining the 
response of the plant to tentoxin: at the 
level of chlorosis in vivo and at the level of 
photophosphorylation in vitro. The codon 
83 region either is, or interacts with, the 
tentoxin receptor of the chloroplasts. More 
than 30 DNA sequences are published for (3 
subunit of proton-ATPase from bacteria, 
chloroplasts, and mitochondria (32). A 
negatively charged residue (Glu or Asp) at 
codon 83 (Nicotiana numbering) is present 
in all of them. This observation, together 
with inhibition of catalysis by tentoxin in 
sensitive species (9, 17), suggests that the 
codon 83 region directly participates in a 
critical ATPase function. If so, codon 83 
specifies a new functional region of (3 sub-
unit, which lies outside of the nucleotide 
and nucleotide-analog (33, 34) binding 
sites and outside of known mutation sites 
on F r p , causing defects in magnesium 
binding, ATP hydrolysis, catalytic cooper-
ativity, or ¥l and C¥l assembly (34, 35). 
Alternatively, tentoxin binding might lead 
to structural distortion in CFx-p and affect 
catalytic function only indirectly. Site-di­
rected mutagenesis in the vicinity of codon 
83 should help resolve these issues. 
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