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Transactivation by AP-1 Is a Molecular Target of
T Cell Clonal Anergy

Sang-Mo Kang,* Bart Beverly, Annie-Chen Tran, Kurt Brorson,
Ronald H. Schwartz, Michael J. Lenardot

Anergy is a mechanism of T lymphocyte tolerance induced by antigen receptor stimulation
in the absence of co-stimulation. Anergic T cells were shown to have a defect in antigen-
induced transcription of the interleukin-2 gene. Analysis of the promoter indicated that the
transcription factor AP-1 and its corresponding cis element were specifically down-regu-
lated. Exposure of anergic T cells to interleukin-2 restored both antigen responsiveness

and activity of the AP-1 element.

In pursuing the observations of Billingham
and colleagues (1) on acquired immunolog-
ical tolerance, Dresser showed that immu-
nization with deaggregated foreign proteins
rendered adult mice unresponsive to subse-
quent antigenic challenge (2). In contrast,
the same antigen preparation initially ad-
ministered with adjuvant was immunogen-
ic. Models that use two signals for lympho-
cyte activation can potentially explain
these early observations (3, 4). Experimen-
tal evidence shows that stimulation of the T
cell receptor (TCR) together with a sec-
ond, nonantigen-specific signal, termed co-
stimulation (3-7), causes T lymphocyte
activation. Antigen receptor stimulation in
the absence of co-stimulation, however,
causes functional inactivation or anergy of
the T cells (4-7). Anergic T cells have a
greatly reduced capacity to produce inter-
leukin-2 (IL-2) and to proliferate when
re-stimulated with antigen-major histo-
compatibility complex (MHC) and co-
stimulation. They also produce less of other
lymphokines such as IL-3 and vy-interferon
(IFN-v). Studies with transgenic mice have
provided compelling evidence that T cell
tolerance in vivo can be due to the induc-
tion of anergy (8).

The CD4* mouse T cell clone A.E7 can
be stimulated to produce IL-2 by a pigeon
cytochrome ¢ peptide (amino acids 81 to
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104) presented by the MHC class II mole-
cule E¥ in the presence of co-stimulation (7,
9). A.E7 cells can be rendered anergic by
depleting them of residual antigen-present-
ing cells (APCs) and activating them with
agents that trigger the TCR or raise intra-
cellular Ca?* concentrations (4, 10). We
induced anergy with concanavalin A (Con
A), a lectin that binds the TCR and does
not activate co-stimulatory pathways (10,
11). A.E7 cells were treated with Con A (5
wg/ml) for 24 hours, after which the block-
ing sugar a-methyl mannoside (10 mg/ml)
was added (12). The cells were subsequent-
ly incubated for 4 to 6 days before use. The
Con A-treated group (termed anergic) had
nearly identical surface expression of CD3,
CD4, CD45, and IL-2 receptor a chain, as
compared to cells treated in parallel with-
out Con A (termed normal) (13). Normal
and anergic T cells were then restimulated
with antigen and splenic APCs, which
provide full co-stimulation. Anergic A.E7
cells typically showed a 70 to 90% reduc-
tion in maximal incorporation of 3H-
labeled thymidine and a requirement for
25- to 50-fold more antigen to obtain half-
maximal proliferation, although anergic
cells were capable of proliferating in re-
sponse to exogenous IL-2 (Fig. 1A). In
anergic cells, maximal production of IL-2
was significantly decreased (to between
one-tenth and one-fiftieth of the normal
value), whereas maximal IFN-y production
was only diminished from one-third to one-
half at 10 wM antigen (Fig. 1, B and C).
Northern (RNA) blot analysis of a time
course of induction revealed that steady-
state mRNA for IL-2 peaked sharply at 4
hours after antigen stimulation, whereas
steady-state mRNA for IFN-y appeared to
plateau by 6 hours (Fig. 2A, lanes 1
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through 7) (14). Thus, critical regulatory
events for IL-2 mRNA production occur at
times earlier than 4 hours. Induction of
both mRNAs depended on peptide antigen
(Fig. 2A, lanes 8 and 9). As observed for
lymphokine production, IL-2 mRNA
amounts were dramatically decreased in
anergic A.E7 cells, whereas IFN-y mRNA
amounts were only modestly attenuated
(lanes 11 and 13).

Studies have shown that IL-2 mRNA
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Fig. 1. Proliferation and lymphokine production
assays of normal and anergic A.E7 cells. AE7
cells induced into the anergic state or normal
controls were rechallenged with B10.A spleen
cells and increasing amounts of pigeon cy-
tochrome ¢ peptide (amino acids 81 to 104)
(12). (A) Proliferation assay. [*H]thymidine was
added 24 hours after stimulation, and incorpo-
tation was measured after an additional 16
hours (70). Unconnected points above the
“+|L-2" bar denote cells treated with IL-2 (30
units per milliliter) in the absence of antigen. (B)
IL-2 bioassay on 24-hour culture supernatants.
(C) IFN-y assay on 24-hour culture superna-
tants. Error bars are for triplicate samples.
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amounts can be controlled at the level of
either gene transcription or mRNA stability
(15, 16). To determine transcription rates
for the IL-2 and IFN-y genes, nuclear run-
on assays were performed. For measuring
lymphokine gene transcription, we needed
to exclude homopolymeric nucleotide se-
quences and subtle repetitive elements from
target DNAs (15). Using selected target
sequences, we found that after a 4-hour
stimulation with antigen and fibroblasts
bearing E¥ class II molecules (DCEK) cells,
IL-2 gene transcription was induced in nor-
mal cells, but the induction in anergic cells
was 1/7.4 that of normal (Fig. 2B). IFN-y
gene transcription was modestly reduced in
anergic cells (Fig. 2B).

We next tested whether the activity of
the 300-bp enhancer-promoter region of
the IL-2 gene is affected in the anergic
state. We used pools of stable transfectants
of A.E7 cells containing this region linked
to a chloramphenicol acetyltransferase
(CAT) reporter gene (16—19). To analyze
T cells without the presence of contami-
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Fig. 2. Northern blot analysis of IL-2 and IFN-y
steady-state mRNA amounts and nuclear run-on
analysis. (A) Total RNA was isolated from 2 x 107
A.E7 cells stimulated with 10 pM antigen and 1 x
108 irradiated B10.A spleen cells (depleted of T
cells) after the times indicated above the panel
(74). The same blots were sequentially hybridized
with the IL-2 or IFN-y probes as indicated. A.E7
cells in lane 9 were not stimulated with antigen.
(B) Nuclear run-on assays. Bar graphs indicate
the mean + SD of two determinations. In each set
of four, first bar is normal, no antigen; second bar
is normal 10 uM antigen; third bar is anergic, no
antigen; fourth bar is anergic, 10 uM antigen. The
pUC18 is a control for nonspecific hybridization.
Results are representative of two separate exper-
iments.

IFN-y

nating antigen-presenting cells, we stimu-
lated A.E7 cells with magnetic bead-
loaded DCEK cells as APCs (19). Either
Con A-treated or normal A.E7 cells could
then be isolated by a magnetic field from
the APCs for CAT or nuclear extract
analysis. In normal A.E7 cells with the
IL-2 promoter construct, CAT activity
was induced by 0.1 or 1 uM peptide
antigen (Fig. 3). Induction of CAT activ-
ity by either dose of antigen was drastically
reduced in anergic cells, concomitant with
decreased endogenous IL-2 production
(Fig. 3 and Table 1). Anergy also de-
creased the activity of the 300-bp human
IL-2 gene enhancer linked to a minimal
B-interferon promoter, but control con-
structs dependent solely on the TCR-a
enhancer or the herpes virus thymidine
kinase promoter were unaffected (13).
The 300-bp IL-2 promoter contains a
number of DNA response elements that are
bound by gene regulatory factors (17, 20,
21). Four well-characterized enhancer ele-
ments include those that bind NF-AT,
NF-kB, and AP-1 and the NF-IL2A site
that binds octamer proteins (20, 21). We

Normmal  Anergic
f r 1
Antigen (uM) 0 0.1 1 0 0.1 1
IL-2 (0.3 kb)

Fig. 3. CAT assays of A.E7 cells stably trans-
fected with the constructs indicated to the left of
the panel (79). Pools of stable transfectants
were then treated with Con A or media as
indicated and subsequently stimulated with the
indicated concentrations of antigen and DCEK
cells for 16 hours. A.E7 cells were magnetically
separated from the DCEK cells before assay.
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and others have shown that these DNA
response elements contribute significantly
to the activity of the mouse IL-2 promoter
(13, 20, 21). We tested the activity of these
elements in anergic cells by preparing pools
of stably transfected A.E7 cells bearing
CAT reporter constructs with multimerized
copies of these elements. Analyses of nor-
mal and anergic pools of stable transfectants
showed that a construct containing the
AP-1 site from the IL-2 gene was the most
affected (Fig. 3 and Table 1). In anergic
cells, maximally induced CAT activity was
decreased to one-twentieth of normal. In a
second independent pool of stable transfec-
tants of the AP-1 construct, the value was
one-sixth of normal, and in a third pool,
with a slightly different version of the IL-2
AP-1 site (22), the value was one-twelfth of
normal. Control experiments showed that
mutations in the AP-1 binding site of the
IL-2 AP-1 construct eliminated antigen
inducibility and left a low basal activity that
was unaffected by anergy. By contrast, an
IL-2 AP-1 construct with upstream muta-
tions in a region that conferred CD28
responsiveness in Jurkat cells (22) retained
antigen-induced activity that was decreased
in anergic cells. We interpreted these ef-
fects on the AP-1 site to be significant
because mutations in this site severely re-
duce or eliminate the activity of the 300-bp
IL-2 promoter (20, 21, 23).

Induction of none of the other transcrip-
tion element constructs was as significantly
affected by anergy (Fig. 3 and Table 1). The
NF-AT and NF-IL2ZA constructs were es-
sentially unaffected. The maximal activity
of a multimerized kB site from the mouse
IL-2 gene (IL-2xB) was approximately one-
half to one-fourth of normal, and the max-
imal activity of a multimerized kB site from
the immunoglobulin gene (IgkB) was hard-
ly affected in anergic cells. Endogenous IL-2
gene expression was decreased by the induc-
tion of anergy in all of the pools of stable
transfectants as reflected by IL-2 bioactivity
(Table 1).

Electrophoretic mobility shift analysis
(EMSA) was then performed with nuclear
extracts and defined factor binding sites
(Fig. 4) (24). Control extracts from EL-4
mouse T lymphoma cells before and after
stimulation with phorbol 12-myristate 13-
acetate (PMA) revealed that Oct-1 and
Oct-2 were constitutively expressed, where-
as AP-1, NF-kB, and NF-AT were strongly
induced. In nuclear extracts from A.E7
cells, Oct-1 was constitutive and did not
change under the conditions tested. Oct-2,
shown to activate the IL-2 octamer site (20,
21), was present in unstimulated A.E7 cells
and was induced moderately by antigen at
4.5 hours. Anergic cells had slightly higher
basal amounts of Oct-2 that increased de-
tectably on stimulation. For NF-AT, slight
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constitutive binding was detected in un-
stimulated anergic cells, but maximally in-
duced NF-AT binding was nearly the same
in normal and anergic cells. NF-kB was also
induced to equivalent amounts in normal
and anergic cells. The induced amounts of
NF-«kB in lanes 3 and 8, in which A.E7
cells were incubated 4.5 hours with DCEK
cells in the absence of antigen, were due to
the production of low amounts of tumor
necrosis factor a (TNF-a) by DCEK cells.
TNF-a induces NF-kB in T cells (25).
Unlike the other factors, AP-1 binding
displayed a sharp peak in binding activity at
3 hours. This peak preceded the apogee of
IL-2 mRNA accumulation at 4 hours and
suggests that AP-1 may act as a limiting
element for IL-2 gene transcription. AP-1
binding was reduced in anergic cells at the
peak 3-hour time point (Fig. 4). At 4.5
hours, the low amount of induced AP-1
binding was comparable in normal and
anergic cells (Fig. 4). Repeat experiments
confirmed that AP-1 binding is decreased
only at time points before the peak of IL-2
mRNA. Nonetheless, control experiments
revealed no delay in the kinetics of either
IL-2 mRNA accumulation or production of
IL-2 bioactivity in anergic T cells (13). The
binding complex from A.E7 cells comi-
grated with the AP-1 complex defined in
HeLa cells with a human collagenase DNA
site (26) and reacted with antiserum to
either the c-fos or c-jun protein products
(13). Thus, AP-1 induction is moderately
decreased at early time points after antigen
stimulation, and the low amount of AP-1

Fig. 4. Electrophoretic mobility EL-4

Nomal AFE7

binding observed at 4.5 hours cannot sup-
port transcription at later times in anergic
cells.

Two studies have proposed that a site
centered around —180 of the IL-2 promoter
is also an AP-1 site (21, 27), although
several studies have shown that deletion of
this element has no effect on the inducibil-
ity of the IL-2 promoter (17, 20, 21). We
detected no binding of AP-1 to this site
(13). Moreover, antibodies to c-jun and
c-fos protein products failed to react with
complexes formed with this site, and nei-
ther the IL-2 AP-1 nor the human colla-
genase AP-1 oligonucleotides could com-
pete with the complexes (13).

We and others have shown that IL-2
treatment of anergic cells can restore pro-
liferation and lymphokine production to
normal amounts (6, 28). To determine
whether this reversion was correlated with a
renewed ability to induce the IL-2 AP-1 site
in response to antigen, we treated pools of
normal and anergic A.E7 stable transfec-
tants with IL-2 for 7 days (Fig. 5). Five days
after stimulation with Con A, proliferation
of the anergic cells was one-twentieth the
value for normal cells in response to stim-
ulation by 1 pM antigen. After 7 days in
IL-2, IL-2 production from the endogenous
gene and inducibility of both the 300-bp
IL-2-CAT and IL-2 AP-1-CAT constructs
were restored to normal amounts in anergic
AL.E7 cells (Fig. 5 and Table 1). Induction
of the AP-1 complex also returned to nor-
mal (13).

Our results show that anergy, a poten-
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dC], and 20,000 cpm of end-la-
beled oligonucleotide probe were
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min at ambient temperature in a
6-pl reaction (20, 21, 24). In lanes
3 and 8, A.E7 cells were incubat-
ed with DCEK cells in the ab-
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tional Cancer Institute, Bethesda, Maryland) and the IgkB oligonucleotides, respectively. Similar results
were obtained with the corresponding sites in the IL-2 gene, except for the IL-2«xB site, which also
detected a prominent homodimeric complex of the NF-kB p50 subunit (13, 20, 217).
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Fig. 5. Reversion of anergy by IL-2 treatment.
(Top) A schematic of the protocol for the rever-
sion of anergy. (Bottom) CAT assay of normal
and anergic AP-1 stable transfectants treated
with IL-2 (30 units per milliliter) for 7 days, then
stimulated with antigen and DCEK cells for 16
hours before separation and harvest. Micromo-
lar antigen concentrations are indicated at the
top of the CAT assay.

tially important mechanism of extrathymic
tolerance (8, 10, 29), results from a molec-
ular change whereby an initial stimulation
of a cell surface receptor diminishes gene
activation in response to subsequent signal-
ing through the same receptor. The fact
that the NF-AT and octamer elements were
unaffected by anergy argues against a gen-
eralized signal transduction defect. This
reinforces the notion that a specific regula-
tory event occurs during anergy induction
(30). Anergy affects AP-1 but does not
significantly affect the T cell-specific regu-
lator NF-AT, which contains Fos and Jun
proteins (31). One possibility is that the
cytoplasmic component of NF-AT (31,
32), and not Fos or Jun, is rate limiting for
NE-AT binding and transactivation. How-
ever, we have not detected significant dif-
ferences in the induction of c-fos or c-jun
mRNA between normal and anergic T cells
(13). Thus, an alternative possibility is that
specific posttranslational down-modulation
of AP-1 transactivation occurs in anergic
cells. This regulatory feature of the AP-1
transactivator may serve to modulate gene
activation that is coupled to surface recep-
tor signaling in other cell lineages.

Our experiments demonstrate that an-
ergy and its gene regulatory phenotype can
be reversed by IL-2 (6, 28). In certain
circumstances, anergy may down-regulate T
cell responses immediately after antigen
exposure and could later be reversed if the
antigen does not persist. Immunomodula-



Table 1. Transcriptional activity of IL-2 promoter elements in normal and anergic AE7 T
lymphocytes. Percent acetylation was calculated as the fraction of acetylated chloramphenicol to
total chloramphenicol after thin-layer chromatographic separation and quantitation in a Phosphor-
imager. CAT assays were normalized to the amount of protein for all antigen doses and between
anergic and normal groups of cells for the pool of transfectants for each DNA response element
construct. Unstimulated control samples were incubated without antigen or APCs. For the IgkB site,
CAT activity could be stimulated by APCs without antigen, but IL-2«B activation required both
antigen and APCs (20, 217). Assay conditions may vary between pools of stable transfectants for
individual constructs, which may contribute to variations in the total percentage of acetylated
chloramphenicol observed. We measured IL-2 by testing the culture supernatants from re-
stimulated pools of stable transfectants in a CTLL proliferation assay. One unit equals the amount
of supernatant needed to achieve half-maximal proliferation under standard conditions. Assay
conditions vary between pools of stable transfectants, leading to different total units although
different antigen stimulations of normal and anergic cells were assayed together. We calculated
CAT value by subtracting the background percent acetylation observed in unstimulated samples
from the percent acetylation observed with the highest antigen dose and taking the ratio of the
activity observed in normal cells to the activity observed in anergic cells.

Normal Anergic
Antigen CAT
Promoter elemant (M) Acetylation L2 Acetylation IL-2 value
(%) (%)
IL-2 promoter 0 0.38 0 0.47 0
0.1 11.00 97 1.30 0.3
1 11.00 120 1.60 0.6 9.4
IL-2 AP-1 0 0.08 0 0.1 0
0.1 1.5 79 0.20 0.2
1 23 126 0.22 0.8 20.2
NF-IL2A 0 0.18 0 0.21 0
0.1 0.54 61 0.34 0.6
1 1.31 136 1.10 2.8 1.3
IL-2xB 0 0.12 0 0.18 0
0.1 14.0 8 4.0 0
1 19.0 37 5.2 0.01 3.8
IgkB 0 0.04 0 0.09 0
0.1 0.30 1.8 0.31 <0.1
1 0.37 6.7 0.24 <0.1 22
NF-AT 0 0.03 0 0.04 0
1 1.30 117 1.40 11.5 0.9
IL-2 promoter 0 0.04 0 0.040 0
(+ IL-2 treatment) 0.1 0.39 18 0.36 9
1 1.00 40 1.10 26 0.9
AP-1 (+ IL-2 0 0.03 0 0.03 0
treatment) 0.1 0.20 31 0.12 18
1 0.42 82 0.27 40 1.6

tion strategies based on anergy induction
may require continuous antigen exposure
and possibly blockade of IL-2 production to
be effective. Because extrathymic immune
tolerance in mature animals can be estab-
lished in vivo by the induction of T cell
anergy, it will be important to determine
whether T cells induced into the anergic
state in vivo display a defect in AP-1
transactivation. Also, the description of
anergy in B cells (33) provides an opportu-
nity to examine the possibility of a gener-
alized mechanism for anergy in all lymphoid
cells.
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A Truncated Erythropoietin Receptor That Fails to
Prevent Programmed Cell Death of Erythroid Cells

Yukio Nakamura, Norio Komatsu,* Hiromitsu Nakauchit

Aform of the human erythropoietin receptor (EPOR) was identified in which the cytoplasmic
region is truncated by alternative splicing. The truncated form of the receptor (EPOR-T)
is the most prevalent form of EPOR in early-stage erythroid progenitor cells, but the
full-length EPOR (EPOR-F) becomes the most prevalent form in late-stage progenitors.
EPOR-T can transduce a mitogenic signal. However, cells transfected with EPOR-T are
more prone to programmed cell death than those expressing EPOR-F. EPOR-F may
transduce a signal to prevent programmed cell death that is independent of the mitogenic
signal, and alternative splicing of the EPOR gene may have an important role in eryth-

ropoiesis.

Erythropoietin (EPO) affects erythroid
progenitors in the bone marrow by binding
to the erythropoietin receptor (EPOR).
The effects of EPO seem to be dependent
on the stage of maturation of the cell on
which it acts. EPO provides a proliferative
signal to the erythroid burst-forming unit
(BFU-E), edrly-stage progenitors, a differ-
entiation signal to the erythroid colony-
forming unit (CFU-E), late-stage progeni-
tors (1), and a signal to maintain cellular
viability to late-stage progenitors (2). EPO
also inhibits DNA breakdown and prevents
apoptosis in erythroid progenitor cells (3).
Furthermore, EPO stimulates megakary-
opoiesis (4). The mechanism by which
these different signals are transmitted by
one or more EPORs remains unknown.
We have detected three forms of the
EPOR. Two of them were isolated by
screening a cDNA library from an EPO-
dependent megakaryoblastoid cell line,
UT7 (5), with mouse EPOR cDNA as a
probe (6). Of ten clones isolated, two had
an open reading frame encoding full-length
EPOR (EPOR-F) identical to the receptor
isolated from liver or erythroid cell lines
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(7). Another cDNA clone had a 104-bp
insert in the extracellular region (Fig. 1A).
This insert introduces a stop codon before
the transmembrane domain, such that this
message encodes a soluble form of EPOR
(EPOR-S) lacking both the transmembrane
and cytoplasmic portions (Fig. 1B). The
existence and the function of similar solu-
ble receptor species have been reported for
other members of the cytokine receptor
superfamily (8).

A third form of EPOR was recovered by
replicating mRNAs from normal human
bone marrow (BM) mononuclear cells in
the reverse transcriptase polymerase chain
reaction (RT-PCR). After PCR with prim-
ers in exon [ and IV (PCR 1-4) (Fig. 1A),
a single 508-base pair (bp) band was ob-
served as expected from the cDNA se-
quence (Fig. 1C). After PCR with the
primers in exons IV and VIII (PCR 4-8)
(Fig. 1A), three bands were detected. One
was the 608-bp product predicted from
EPORC-F; others were approximately 700 bp
and 800 bp in size (Fig. 1C). We subcloned
the 700-bp PCR products into pBluescript
and sequenced several clones. There were
two different 700-bp products with different
inserts; one had a 104-bp insert (insert o)
corresponding to that in EPOR-S and one
contained a 95-bp insert in the cytoplasmic
region (insert B) (Fig. 1A). The sequence
in the 95-bp insert includes a stop codon.
Thus, the message encodes an EPOR that



