
the common conclusion that the tektite 
ejection process selectively samples only 
the top -100 m of target material and, 
therefore, a thin veneer of carbonate over 
siliceous materials may be sufficient to pro- 
duce the observed trends of chemical vari- 
ation between the glasses. Proposed impact 
sites at both Manson, Iowa, and Chicxu- 
lub, Mexico, are in geologic terranes where 
appropriate mixtures of carbonate and sili- 
cate target materials are present ( 1 4 ) .  
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Scale and Structure in Natural Food Webs 

Karl Havens 
The degree to which widely accepted generalizations about food web structure apply to 
natural communities was determined through examination of 50 pelagic webs sampled 
consistently with even taxonomic resolution of all trophic levels. The fraction of species in 
various trophic categories showed no significant overall trends as the number of species 
varied from 10 to 74. In contrast, the number of links per species increased fourfold over 
the range of species number, suggesting that the link-species scaling law, defined on the 
basis of aggregated webs, does not reflect a real ecological trend. 

For over two decades, ecologists have tried 
to establish generalizations about the struc- 
ture of natural food webs. From trends in 
published webs, three scaling laws (1-3) 
have been proposed. The first, the species 
scaling law, proposes that the basal (au- 
tot~ophs and detritus), intermediate (prey- 
ing on others and themselves preyed upon), 
and top (having no predators) fractions of 
species do not vary with the total number of 
species (S) in the web. The second, the link 
scaling law, proposes that the fractions of 
top-intermediate, top-basal, intermediate- 
intermediate, and intermediate-basal links 
do not varv with S. The third. the link- 
species scaling law, proposes that the total 
number of links (L) is proportional to S and 
that linkage density (d = LIS) does not vary 
with S. 

These laws have been supported by stud- 
ies, each including up to 113 webs (1-5). 
They have also been criticized for lack of 
uniformity in data collection, linkage criteria, 
and species aggregation in the food webs used 
to develop and test the laws (6, 7). For 
example, some webs present "whales" as sev- 
eral distinct trophic groups, whereas others 
make whales a single group that feeds on 
plankton, macroinvertebrates, and seals. Ag- 
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Kent. OH 44242. 

gregation tends to be uneven across trophic 
levels; basal species are often lumped into 
categories such as "plankton" while top spe- 
cies are aggregated only slightly or not at all 
(8). To address this problem, Briand and 
Cohen developed scaling laws for webs where 
biological taxa were first aggregated into 
"trophic species," those having identical pred- 
ators and prey (1). Others have argued that 
this aggregation disguises trophically impor- 
tant interactions (6, 9),  and it remains uncer- 
tain whether the scaling laws reflect trends in 
natural nonaggregated webs. Recently Mar- 
tinez (10) suggested that they do not, and 
Briand, Cohen, and others have proposed 
that link-species scaling in particular might be 
scale-dependent (2, 4, 11, 12). However, 
investigations have used either descriptions of 
webs from various sources that d8er in Sam- 
pling methods and completeness (13, 14) or a 
single, highly resolved web successively aggre- 
gated by computer algorithms (10). 

I have analyzed the scaling laws using a 
large group of nonaggregated natural webs 
sampled consistently and constructed from 
identical linkage criteria (15, 16). The 50 
webs represent the pelagic communities of 
small lakes and oonds in New York State 
sampled as part 'of the Adirondack Biota 
Project (17). Taxa at all trophic levels 
(fish, invertebrate predators, zooplankton, 
and phytoplankton) are resolved to genus 
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or species and further resolved into life 
history stages where ontogenic changes in 
diet occur (for example, cyclopoid nauplii 
and larval fish). A total of 220 taxa are 
represented. The webs range in size from 10 
to 74 species (Table I), approximately the 
same range of S covered by the nonaggre- 
gated webs of Sugihara et al. (13) and a 
much greater range than covered by the 
original Briand (18) webs. 

The data from the 50 natural webs (Fig. 1) 
support the species scaling law (1-3). The 
fractions of top (TF), intermediate (IF), and 
basal (BF) species are scale invariant, with 
means of 0.06, 0.44, and 0.50, respectively. 
Cohen and Briand (2) reported scale-invari- 
ant fractions with means of 0.19, 0.53, and 
0.29. Martinez (10) reported means of 0.01, 
0.86, and 0.13 and suggested that the greater 

Fig. 1. Fraction of species in (A) top (TF), (B) 
intermediate (IF), and (C) basal (BF) trophic 
categories as a function of S. The solid lines 
represent the fraction means; the dashed lines 
indicate the fraction means predicted by the 
species scaling law. 

fraction of top species given by Cohen and 
Briand was an artifact of aggregation. The 
present results indicate that for pelagic webs 
that view is correct; only a small fraction of 
species are top predators. Indeed, it is ques- 
tionable whether any natural food webs con- 
tain top species as defined by Cohen and 
Briand (1,2), which lack all predators includ- 

- 
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Fig. 2. Fraction of (A) top-intermediate (LtilL), (B) 
top-basal (LtblL), (C) intermediate-intermediate 
(LiilL), and (D) intermediate-basal (LiblL) links as 
a function of S. The solid lines represent the 
fraction means; the dashed lines indicate the 
fraction means predicted by the link scaling law. 

ing cannibals (10). By convention (1-5), 
cannibalistic interactions were not considered 
when assigning species to the three trophic 
categories. Had they been included, none of 
the webs would have contained top species. In 
the smallest webs (S < 20) there is evidence 
of a reduced fraction of intermediate species 
and an increased fraction of basal species. 
These trends are not statistically significant 
but have been reported previously (1, 2, 10). 
The trends coincide with a reduction in the 
number of intermediate trophic levels from 
two to one. 

The results in Fig. 2 support the link 
scaling law (1-3). The fractions of top-inter- 
mediate (L tz ) ,  top-basal (Ltb/L) , intermedi- 
ate-intermediate (Liz) ,  and intermediate- 
basal (Lib/L) links are scale invariant, with 
means of 0.10, 0.05, 0.32, and 0.53, respec- 
tively. Cohen and Briand (2) reported scale- 
invariant fractions with means of 0.35, 0.08, 
0.30, and 0.27. More links to top species and 
fewer intermediate-basal links reflect inflated 
values for the fraction of top species in their 
webs (10). In the smallest webs herein. the . , 

fraction of top-basal links is increased while 
the fraction of intermediate-intermediate 
links is reduced to zero. The trends are not 
statistically significant but have been previ- 
ously observed (1, 2, 10). In this case, they 
reflect the loss of intermediate-intermediate 
links in webs where the number of trophic 
levels is less than four. 

Overall, the results support Briand and 

Fig. 3. (A) Links (L) and (B) linkage density (d) as 
a function of S. The solid lines are fitted to the data 
points; the dashed lines indicate the relations 
predicted by the link-species scaling law. 
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Table 1. Properties of the 50 food webs (22) 

Lake name S L d TF IF BF LtilL LtblL LiilL LiblL 

Alford 
Balsom 
Beaver 
Big Hope 
Bridge Brook 
Brandy 
Brook Trout 
Buck 
Burntbridge 
Cascade 
Chub 
Chub Pond 
Connery 
Constable 
Deep 
Emerald 
Falls 
Fawn 
Federation 
Goose 
Grass 
Gull 
Gull North 
Helldiver 
High 
Hoel 
Horseshoe 
Indian 
L Rainbow 
Long 
Loon 
Lost 
Lost East 
Lower Sister 
Oswego 
Owl 
Rat 
Razorback 
Rock 
Russian 
Safford 
Sand 
South 
Squaw 
Stink 
Twelfth Tee 
Twin East 
Twin West 
Whipple 
Wolf 

Cohen's view (1-5) that the "shape" of 
food webs as described by both the species 
and link fractions is a scale-invariant prop- 
erty. The results also demonstrate the va- 
lidity of community assembly models, 
which have predicted similar scale-invari- 
ant patterns (1 9, 20). 

The results do not support the link- 
species scaling law. In these natural nonag- 
gregated pelagic webs, linkage density is not 
scale invariant (Fig. 3 ) .  The relation be- ~- , 

tween L and S can instead be approximated 
by a power function (L = S'.4), as proposed 
by Pimm, Lawton, and Cohen (12) and 
recently demonstrated by Martinez (14) for 
a set of 175 aggregated food webs taken 
from previous findings. Such a scale-variant 

relation is likely to exist in all food webs 
having indiscriminant herbivores. Particle 
feeders including many planktivorous fish 
and zooplankton consume a potentially lim- 
itless number of prey species because link- 
age is not so much a species-dependent 
phenomenon as it is a size-dependent one. 

Powerful patterns in community structure 
do exist in nature, albeit some are indepen- 
dent of scale and others are not. Ecologists 
must now turn to the more interesting ques- 
tion of what causes those patterns. 
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