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Fluid mixing is a successful application of chaos. Theory anticipates the coexistence of 
order and disorder-symmetry and chaos-as well as self-similarity and multifractality 
arising from repeated stretching and folding. Experiments and computations, in turn, 
provide a point of confluence and a visual analog for chaotic behavior, multiplicative 
processes, and scaling behavior. All these concepts have conceptual engineering coun- 
terparts: examples arise in the context of flow classification, design of mixing devices, 
enhancement of transport processes, and controlled structure formation in two-phase 
systems. 

During the past few years there has been 
considerable interest in dynamical chaos, 
and examples have been documented among 
physical, chemical, and biological systems 
(1). Chaos is widespread; in the context of 
dynamical systems chaos is not the excep- 
tion but the rule. The technological impact 
has been less spectacular, however. More 
often than not, the findings have been a 
posteriori; that is, explaining ongoing com- 
plex behavior and demonstrating that the 
roots of the complexity can be traced back to 
a deterministic explanation. There have 
been recent promising developments in the 
control of chaos (2), and there are instances 
where keeping a system in a chaotic state 
might be beneficial. In most practical cases, 
however, chaos is to be minimized or avoid- 
ed altogether (3). The application of chaos 
to fluid mixing, however, provides a coun- 
terexample to these observations. Fluid mix- 
ing is an instance in whkh chaos is clearly 
beneficial (4). In this article we bring into 
focus recent theoretical developments and 
apply them to the interpretation and design 
of mixing processes in natural sciences and 
engineering. A few flows, which have be- 
come paradigms for mixing studies, are used 
to exemplify concepts. 

Chaos and Symmetry 

When stripped of all specific details, mixing 
can be viewed in purely geometrical terms 
(5). Mixing is intimately bound to the 
stretching and folding of fluid elements, an 
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idea that can be traced back to a lecture- 
demonstration by Osborne Reynolds in 
1894 (6). In turn, stretching and folding 
constitute the fingerprint of chaos (5). 
Thus, kinematics can serve as template for 
the evolution of molecular diffusion, chem- 
ical reactions, breakup, and aggregation 
(7). 

Numerous experimental and computa- 
tional examples have shown that real fluid 
flows can produce the type of stretching and 
folding that leads to chaos (8-12). Chaos is 
impossible in steady, bounded, two-dimen- 
sional flows. A steady, two-dimensional 
flow is completely characterized by time- 
invariant streamlines that coincide with 
path lines, and fluid elements lie within the 
same streamlines for all time. A necessary 
(but not sufficient) condition for chaos in 
fluid flows is "streamline crossing" of two 
streamline portraits taken at arbitrary 
times. The crossings can create a special 
type of folding called a horseshoe map, 
which is one of the signatures of chaos (5) .  
Stretching accompanied by this type of 
folding results in effective mixing within 
chaotic regions. This is precisely what is 
accomplished in suitably designed time- 
periodic flows. Time modulation can be 
achieved by various means. One possibility, 
used in flows with low Reynolds numbers 
(Stokes flows), is to use out-of-phase mo- 
tion of boundaries; another possibility is to 
exploit the natural oscillations in flow due 
to an increase in Rayleigh number as in the 
case of Rayleigh-BCnard flow (1 3), or the 
Reynolds number as in the case of Taylor- 
Couette flow, vortex shedding behind a 
cylinder (14), and other, somewhat more 
complex, geometries (1 5, 16). 

The mixing, however, need not be 
widespread. In general, poorly mixed re- 
gions-islands of regularity, known as Kol- 
mogorov-Arnold-Moser (KAM) t o r i 4 o -  
exist with well-mixed chaotic regions. Fluid 
inside an island can never escape; fluid 

outside an island can never enter. In spa- 
tially periodic systems islands correspond to 
tubes (Fig. 1). 

The mathematical analysis of these con- 
cepts is particularly simple in the case of 
systems represented as maps [time-periodic 
flows, spatially periodic flows, quasi-period- 
ic systems (1 7), and some classes of three- 
dimensional flows]. Motion of fluid particles 
is represented by 

where n successive applications of the (non- 
linear) point transformation T gives the 
position of the fluid particle initially located 
at x,. A vector dx, evolves as 

dx ,  = DTn(dx0) (2) 

where DT" represents U",/dx,. The ratio 
Idx,llldx,l is the length stretch in the inter- 
val 0 to n and is denoted h,,,(xo). Chaotic 
flows lead to a distribution of stretchings of 
the form Ao,,(x,) = exp(m),  where a is the 
short-time Liapunov exponent associated 
with x,. Regular, that is, nonchaotic, flows 
have ho~,(x,) = 1 + Kn,  where K is a 
constant'. In time-periodic flows can be 
expressed as 

where hi-,, , is the stretching experienced 
in the interval i - 1 to i. Moreover, in 
chaotic flows, the Xi-,,, values quickly be- 
come uncorrelated (18). These two obser- 
vations point to a useful connection. Mul- 
tiplicative processes with weakly correlated 
steps lead to self-similar distributions; that 
is, when properly rescaled, the distributions 
become invariant with respect to time (1 9). 
Similar behavior is expected of stretching 
in the chaotic regions of mixing flows. 

Chaos is associated with disorder; sym- 
metry with order. However, they can 
peacefully coexist. Experimental studies 
have revealed the degree of order and dis- 
order compatible with chaos in fluid flows. 
Dye structures in time-periodic flows evolve 
in an iterative fashion; an entire structure is 
mapped into a new structure with persistent 
large-scale features, but finer and finer scale 
features are revealed at each period of the 
flow (20). Thin striations are produced at 
the expense of thicker ones, and length 
scales (characterized by a striation thick- 
ness, s) decrease exponentially in time. The 
length stretch and striation thicknesses are 
inversely related. It is important to stress 
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Flg. 1. Coexistence of chaos and regularity in a 
spatially periodic flow (PPM). The system con- 
sists of a pipe partitioned into a sequence of 
semicircular ducts by means of rectangular 
plates placed at right angles to each other. The 
flow is a combination of an axial pressure flow 
and a cross-sectional drag flow generated by 
rotation of the pipe relative to the assembly of 
plates. (A) and (B) represent two operating 
conditions. The orange dye is in a chaotic 
region; the yellw dye is trapped within a KAM 
tube. Another KAM tube, symmetric to the one 
shown in the figure, passes through the holes 
left by the orange dye (marked with white ar- 
rows). The orange dye mixes faster in (B) than in 
(A); however, the shapes of the KAM tubes in 
both, and (A) and (B), are remarkably similar. 

that the length scale reduction for many 
problems of interest is about 1[Y' to 105. 
Thus, in polymer blending the typical re- 
duction is from to m, m mixing 
in the Earth's mantle from 6 x 105 m to 
about lo-' m, in mixing in the stratosphere 
from 1 x 106mtoabout 10'm (21),andin 
the turbulent flow of an agitated chemical 
reactor from 10' m to 3 x lo-' m (Kol- 
mogorov scales), and from there on to 
molecular &ion scales. 

Coherent regions of unmixed material 
(islands) in time-periodic chaotic flows dis- 
play island symmetry at regular intervals of 
time (2 1,22). Island symmetry is caused by 
symmetric placement of elliptic points (23) 
[a periodic point at p means that a particle 
initially located at p returns to p after n 
periods, that is, p = T"(p)]. Mathematical- 
ly, two maps A and B are said to be 
symmetric to each other if there exists a 
transformation S such that: 

If A = B, the symmetry is termed ordinary; 
if A-' = B, the symmetry is termed time- 
reversal. In general, S can be rotational 
symmetry or reflectional symmetry. If a map 
possesses symmetry, the periodic points are 
found in symmetric arrangements. As shall 
be shown later, this knowledge provides a 
basis for enhancing mixing. 

Flows. The most thoroughly studied 
flows, experimentally and theoretically, are 
time-periodic closed flows and continuous 
throughput flows, a special case of which 
are spatially periodic flows. An example of a 
closed flow is the time-periodic flow be- 
tween two eccentric rotating cylinders (9, 
11); another is a cavity flow with two 
moving walls (8, 10). A computational 
example is the so-called eggbeater flow 
(24), which can be described as the com- 
position of two shear flows acting on a 
square (Fig. 2). The first flow acts horizon- 

tally for a time T with a velocity field v(y), 
that is, 

and is denoted as a+, = Hx,,, where x = 
(x,y). The second flow acts in a vertical 
direction also for time T: 

and is written as a+, = Vq. In both cases 
particles leaving through the right side 
(top) reenter at the left side (bottom). The 
overall flow is therefore the composition of 
Eqs. 5 and 6, that is, 

Depending on the value of T, the flow can 
be completely chaotic, completely regular, 
or anything in between. 

Continuous throughput flows are varia- 
tions on duct flows. Duct flows consist of a 
two-dimensional cross-sectional flow aug- 
mented bv a unidirectional axial flow: fluid 

Eggbeater flow 
n - Poincare -1,. section :: :/,y 

is mixed 'in the cross section whilee it is 
simultaneously transported down the duct 
axis. In a duct flow, the cross-sectional and 
axial flows are independent of both time 
and distance along the duct axis, and ma- 
terial lines stretch linearly in time (25). 
very much as in two-dimensional steady (or 
regular) flows. Chaos in duct flows can be 
achieved by time modulation or by spatial 
changes along the duct axis (26). One 
example of a spatially periodic duct flow, 
the partitioned-pipe mixer (PPM) , consists 
of a pipe partitioned with a sequence of 
orthogonally placed rectangular plates (see 
Fig. 1). The cross-sectional motion is in- 
duced through rotation of the pipe with 
respect to the assembly of plates, whereas 
the axial flow is caused by a pressure gradi- 
ent; the behavior of the system is charac- 
terized by the ratio of cross-sectional twist 
to axial stretching. Other duct flows of 
technological importance, which possess 

Flg. 2. Eggbeater flaws along with 
re~resentative Poincar6 sections !.r:c.:. ./ .A,.', ...I.,> , 

L f i  4, ,:...:$.'.+.$ 
:,/:,iff:+ 

i d  equivalence to spatially peri- 
i/; 2:/;3+ -. . , .-,--:--. odic flaws. 
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mixing mechanisms similar to the PPM, are 
the T-mixer [sequences of twisted pipes (27)l 
and the K-mixer [an idealized version of a 
static mixer (28)l. Another class of spatially 
periodic flow is suggested by cavity flows. 

Steady cavity flows are poor mixers. The 
mixing, however, can be significantly im- 
proved by means of time-dependent chang- 
es in geometry, as shown in Fig. 3 (29). 
This idea can be readily implemented in the 
context of duct flows by adding a secondary 
b d e  (see Fig. 3). Such a concept has 
applications in polymer processing; for ex- 
ample, single screw extruders can be imag- 
ined as a channel with a moving lid, very 
much as in Fig. 3. Similar designs have 
been arrived at empirically in engineering 
practice (30). 

Stretching and Self-similarity 

Repeated stretchmg and folding generate self- 
similarity. There are two types of self-similar- 
ity: exact and statistical. Exact self-similarity 
arises, for example, in the sequences of creases 
formed by repeated paper folding (3 1). This 
type of self-similarity can be condensed in a 
transformation rule. Statistical self-similarity, 
on the other hand, is manifested by distribu- 
tions that exhibit time invariance when plot- 
ted in rescaled form (32). 

There are two main techniaues that can be 
used to examine statistical self-similarity: sin- 
gle-parameter and multiparameter scaling 
[also called multihctal scaling (33)l. Single- 
parameter technques have been used in the 
context of mixing, in difFusion and reaction 
processes, and in breakup in chaotic flows 
(34, but the bulk of their use so far has been 
centered in critical phenomena (35) and ag- 
gregation processes (36). This technique is 
well suited for the analysis of the time evolu- 
tion of probability density functions of A or 
lo&. M u l k t a l  scaling, on the other hand, 
has been applied to the fine-scale structure of 
turbulence (37-39), to model the aggregation 
probability in clusters generated by diffusion- 
limited aggregation (@), and to interpret the 
statistics of scalar fields and the spectrum of 
finite-time Liapunov exponents in chaotic 
flows in the limit t -+ a (18, 41). Multifrac- 
tals have also been used to describe short-time 
mixing in a random flow. This technque 
works well with plots of A(x,n) in flows 
without islands. 

Scaling. Consider a h g e  number of points 
advected by a flow and let m(A) be the 
number of points with stretching between A 
and A + A. The probability of a point 
undergoing a stretch A after n periods is Fn(A) 
= &(X)/dA; similarly we can define a proba- 

Flg. 3. Mixing imprwement by time-periodic 
changes in geometry. A standard cavrty flow, 
the top boundary moving from left to right, is a 
poor mixer. The streamlines form closed orbits 
enclosing a central elliptic point. The initial con- 
ditions shown in (A) evolve as shown in (B) after 
the top wall has displaced itself 17 times its 
length. Placement of baffles, as shown in (C) 
and (D), changes the streamline portrait radical- 
ly and a hyperbolic point appears. A periodic 
change of geometry. (C), (D), (C), mirror image 
of (D) across the vertical axis, and so on, gen- 
erates chaotic advection. The initiil condition 
shown in (E) evolves into the pattern shown in 
(F) for the same amount of displacement corre- 
sponding to case (B). This concept can be 
readily implemented in continuous throughput 
flows such as single screw extruder flows. One 
possibility is to produce a channel with a sec- 
ondary wavy channel as shown at the bottom of 
the figure. Cuts at different axial lengths gener- 
ate streamline portraits such as those of (C) and 
(D). The mixing shown in (F) can be produced in 
roughly three periods of the secondary channel. 

bility density function Hn for 1 4 ,  that is, 
Hn(logA) = W(logA)/d(logh). It is apparent 
that Fn(A) and Hn(logA) are related by 
HnOogA) = *,(A). 

A distribution of a variable x at period n, 
Gn(x), is said to have single-parameter self- 
similarity (34) if under a transformation of 
variables 

x + y = x/X(n) (8) 

G,(x) + WY) = K(n)Gn(x) (9) 
the new function %(y) becomes (asymptot- 
ically) independent of the period n. X(n) 
can be obtained as the ratio of two succes- 
sive convergent moments of Gn(x), X(n) = 

m,/mi- where the moment mi is given by 

mi(n) = x'Gn(x)dx i o 

K(n) is given by 

K(n) = C (n) (11) 

where CI  is a constant. As a result, %(y) = 
X(n)2Gn(x)/ml ( 4  

The application of these concepts to 
H,,(logA) is straightforward, as shown in 
Fig. 4. Figure 4B shows that, as n increases, 
a wider portion of the curves in Fig. 4A 

Fig. 4. Single parameter scaling of stretching 
distributions. (A) Typical stretching distribution 
Hn(logA) = dN(logA)ld(logA) for the flow be- 
tween eccentric cylinders. (B) The curves in (A) 
nearly overlap when replotted as X(z) = 
(l~A)'H~(logA)l-~(n), where 

is the first momeni of Hn(logA), z = IogAlogA,, 
and where A, is the geometric mean stretching, 
defined as 

log4 = 
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nearly overlap when replotted in scaled 
form, X(z). Rigorously speaking, in the 
limit n + m we have Ao,,(x0) = exp(un) 
for all xo's and X(z) should converge to a 
delta function, but this does not occur in 
the short time scales of interest in mixing. 
In general, we have mi = ml(n)'lmo(n)'-l 
and, because for the case considered m,(n) 
is a constant equal to the number of points 
considered, N, we have mi = ml(n)', 
which implies that all convergent mo- 
ments of Hn show an exponential evolu- 
tion. Thus, uniformity becomes worse be- 
fore it improves. 

Closer examination of the low-2 region 
of X(2) reveals that there is a set of points 
that stretch slowly. These points are in the 
chaotic region, but they remain close to 
islands for long times (if these points are 
considered separately from the rest of the 
~ o ~ u l a t i o n .  their A values exhibit the same 
L L 

type of data collapse when plotted in re- 
scaled form). A general conclusion is that - 
stretching in flows with islands is spatially 
segregated even in the chaotic regions; one 
set of points wanders throughout the "bulk 
of the chaotic region" and undergoes expo- 
nential stretching; the other stays close to 
regular islands for many periods and stretch- 
es slowly. These results are important in 
cases where there are chemical reactions 
leading to different products according to 
diffusion-reaction coupling because the 
overall rate of reaction depends strongly on 
the spatial distribution of reactants (42). 
The effects of islands (or tubes) extend well 
into the chaotic regions. 

Multifractal scaling yields information re- 
garding the distribution of stretching (43). 
The distribution of finite-time Liapunov ex- 
ponents, u(n) = ( l / n ) l ~ g h ~ , ~ ,  denoted Pn(u), 
is expected to scale according to 

where g(u) becomes independent ofn for n + 
m (33). Because u(n) = (l/n)logho,n, dN(u) 
= dN(logh), and du = (l/n)dlogA, after 
normalization and application of the "method 
of steepest descent" we obtain (43) 

Therefore, a plot of (lln) log[nl"Hn(logA)] 
versus (lln) log(h) should produce a time- 
independent function h(u) = -[g(u) - 
g(um)], where am corresponds to the maxi- 
mum of h (a). As shown in Fig. 5, curves for 
different times indeed collapse onto a single 
curve when this scaling is applied. This 
behavior verifies that Eq. 13 produces an 
almost invariant h(u) for flows without is- 

\ ,  

lands. Furthermore, the parabolic shape of 
the curves in Fig. 5 indicate that the stretch- 
ing is log-normally distributed, that is, 

Mixing Enhancement by 
Symmetry Control 

Symmetries provide means of classifying 
and manipulating complex flows. Symme- 
tries exist whenever there are constraints 
on the velocity field: in Stokes flows these 
can be the result of geometricalconstraints; 
in other cases they might be dictated by the 
evenness or oddness of the velocity field. 
Symmetries in simple analyzable flows can 
act as a template for the classification of 
more complex flows. Consider, for exam- 
ple, the application of these ideas to the 
eggbeater flow with even velocity field in 
both H and V (see Fig. 2). In this case we 
have 

where R represents a 90" rotation; that is, 
(x, y) + (- y,x) . Moreover, because R itself 
is symmetric to its inverse with respect to 
reflections across the x axis, R = SxR-ISx 
and H is symmetric about the x axis; H = 
SxHSx, then 

V H  = RSxHSxR-'H 
= SIHSIH = ( S ~ H ) ~  (16) 

where S1 = RS,, S1: (x,y) + (y,x), that 
is, a reflection about the 45" line. Exten- 

sion of this line of analysis suggests the 
introduction of a family of generalized 
eggbeater flows, in which the directions, 
forward (+ 1) or inverse (- 1) of R and H ,  
and the evenness (e) or oddness (o) of the 
velocity field u are unspecified. This pat- 
ternlsymmetry leads to maps of the form 
R'lH '1R'lH '1 

e/o e,o , which translates 
into 32 different flows. However, only four 
of these are independent and each is 
associated with different symmetries; each 
acts as a template for the classification of 
more realistic flows. For example, there is 
a one-to-one correspondence between 
these flows and several spatially periodic 
flows (25), such as the PPM, the K-mixer, 
and the T-mixer (see Table 1 and Fig. 2). 

Probably the most general question 
that can be asked regarding mixing is: 
What flow is capable of generating the 
most effective mixing while consuming 
the minimum amount of energy? In engi- 
neering terms, this question might be 
posed as: How should impeller size and 
geometry be chosen? What is the optimum 
sequence of elements for a static mixer? or 
What is the optimum placement of pins in 
an extruder channel? The answers to these 
questions are quite specific and require 
considerable investment in ex~eriments or 
computer calculations while yielding no 
real conceptual insight. Consideration of 
symmetry of flows allows a reduction of the 
problem to a more tractable, albeit less 
rigorous, one but also allows a theoretical 
basis for geometrical intuition regarding 
mixing. Symmetry in chaotic flows stems 
from underlying geometric constraints on 
fluid motion. Roughly, if there is a line of 
symmetry in a flow, then it is also known 
that poorly mixed regions will be located 
in symmetric arrangements with respect to 
the line (see Fig. 2). Any periodic se- 
quence of flows will possess symmetry. 
Thus, it is possible to alter the location of 
the symmetry lines by changing the flow; 
and this in turn changes the location of 
poorly mixed regions resulting in an over- 
all effective flow. These concepts have 

Table 1. Symmetries provide means of classifying and manipulating complex flows represented as 

0 maps. The eggbeater flow can be expressed as a composition of two 90" rotations; R: (X  y) -, (-y, 
x), and maps representing simple shear, He, H,, according to whether the velocity profile is either 
even (e) or odd (0). Equivalently, as the second iterate of a reflection about the 45" line; S,: (x, y) 
+ (y, x), and either He or H,. Similarly, several kinds of constant throughput flows can be 

-0.2 represented by compositions of rotations, R, and a transformation representing the effect of 
A Poiseuille flow, F,. Three of the four fundamental eggbeater flows correspond to common, 
g continuous, throughput flows. 

-0.4 
Fundamental t - Continuous 
egg beater Ordinary throughput 

Equivalent 

flow reversal flows maps 
-0.6 

0 0.5 1 .O 1.5  
CJ RHeR-lHe = (SlHe)2 -45" None T-mixer R-lFo-lRFo 

RHeRH, = -45" None 
Fig. 5. Scaling of finite-time Liapunov expo- R H o - ~ R - ~ H o  = (S1H0)2 -+90° 180" K-mixer R-lFo-lRFo 
nents in the eggbeater flow with T = 3 corre- RH,RH, = (RH,)Z k45" 180" PPM R-lFoRF0 
sponding to n = 1, 2, 4, 8, 16 to 30 periods. 
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been incorporated in both experimental 
and numerical analvsis of mixing in two- - 
and three-dimensional viscous flows (24, 
25). Results indicate that. although time- 
pe;iodic or spatially periodic flows can yield 
effective mixing, poorly mixed regions ex- 
ist, and the prediction of the exact loca- 
tions and the sizes of these regions is a 
daunting task. Consideration of symmetry 
indicates that aperiodic sequences, al- 
though not necessarily optimal, generate 
more effective mixing compared with the 
corresponding periodic sequence. 

Consider briefly the application of these 
ideas to the eggbeater flow with 45" and 
-45" symmetry lines (see Table 1 and Fig. 
2). In order to improve mixing, we "rotate 
the flow" by 90"; that is, we follow the flow 
V H  with RIVH]RP1 = HV. In the H V  
flow, then, the two symmetry lines will 
switch places relative to their positions in 
the V H  flow, that is, structures that were 
located on the 45" line in the V H  flow will 
now be found on the -45" line in the H V  
flow. The sequences of actions can be writ- 
ten as: 

P,+l = RQnRP1 with 
Qn = PnPnP1 . . . Po and Po = V H  

(17) 

This generates the sequence V H  (n = O), 
HVVH (n = I ) ,  VHHVHVVH (n = 2), 
and HVVHVHHVVHHVHVVH (n = 
3) [note that the H's and V's follow the 
transformation V + VH; H + HV; this 
sequence is called the Morse-Thue se- 
quence; it is aperiodic but it is clearly not 
random (3 1 ) 1. This concept can be readily 
implemented in duct flows (24). In its 
most developed state, symmetry can be 
used to develop rules of thumb regarding 
the most effective sequences of flows (for 
example, geometrical arrangements of el- 
ements in a static mixer, or placement of 
baffles in channel or tank mixing). 

Transport Enhancement 

Chaos is an effective transport aid. At small 
scales, stretching and folding smooth out 
concentration fluctuations; at global scales, 
chaos shuffles large portions of fluid (44) 
and thereby produces global uniformity and 
increased transport between walls and bulk 
fluid (45). 

Molecular interdiffusion is controlled by 
stretching. Stretching increases the area 
available for interdiffusion and reduces dif- 
fusional length scales, s. Because both are 
related (s - llh), the effect of stretching on 
molecular diffusion goes as hZ (46). More- 
over, stretching provides a glimpse into the 
character of striation thickness distribu- 
tions. Because the length achieved by a 
material element is proportional to its 
stretch, the number of striations with thick- 

ness s, dN(s), is proportional to the total 
stretch, that is, dN(s) - hdN(h). Equiva- 
lently, because s - llh, sdN(s) - dN(h), 
and 

This result can also be justified as follows: If 
we divide the flow into small boxes, the 
total intermaterial area in a box is propor- 
tional to A. The average thickness in the 
box is (s) - llh, and each box contains a 
number of striations proportional to A. 
Therefore, the number of striations with 
thickness (s), dN(s), is equal to dN(h), 
times the number of striations per box. This 
again leads to dN(s) = hdN(h) and dN(s)l 
ds = h3dN(h)ldh. 

For flows without islands, a log-normal 
Hn(logh) (Eq. 19) leads immediately to an 
s distribution of the form 

where (s) is the mean striation thickness 
(47). The standard deviation of the distri- 
bution, Kt, increases linearly in time; this 
relation suggests that unmixed regions per- 
sist for long times. 

The order of contact of the striations 
matters as well; one such case is when 
there are diffusion and diffusion-controlled 
chemical reactions of the form A + B + 
P. Reaction occurs at  lanes between stri- 
ations and thin lamellae are consumed by 
thicker neighbors, which merge them- 
selves into thicker domains. This process 
results in a time-evolving distribution of 
striation thicknesses. It has been shown, 
however, that different initial striation 
thickness distributions (for example, ran- 
dom, normal, or other) evolve asymptot- 
ically into the same limiting distribution 
(48, 49). Other cases might be less forgiv- 
ing. For example, in moderately fast reac- 
tions of the form A + B + P, P + B + R, 
the time evolution and the final ratio of 
the amounts of the two products, PIR, 
depend on the precise way in which the 
fluids are mixed (45). 

More generally, the extent to which the 
transport is affected by stretching depends 
on the ratio between the rate of mixing and 
the speed of molecular diffusion. Diffusion 
and convection occur in parallel, and, de- 
pending on the conditions, one might dom- 
inate over the other. Idealized stretching 
and shuffling mechanisms highlight these 
competing effects. Consider the case of 
one-dimensional heat diffusion into a fluid 
thread whose boundaries are maintained at 
constant temperature and two shuffling 
mechanisms. In mechanism I, which mim- 
ics the stretching and folding present in 
chaotic flows. a thread of thickness 1 is 
stretched by a factor of 2, cut into two, and 
the pieces are glued together to restore the 

original thickness; in mechanism 11, the 
thread is cut into halves, flipped, and glued 
together (Fig. 6A). Diffusion occurs after 
each shuffling step. Because the stretching 
and cutting are instantaneous, the processes 
are described by 

ae/at = a2elax2 (21) 

0(x,O) = 0, 0(-1,t) = 0(l,t) = 1 (22) 
where 0 is dimensionless temperature, t is 
dimensionless time, and x is dimensionless 
distance. With diffusion alone, the fluid 
reaches an average temperature of 112 at t = 
0.0485; we take this value of t  as the upper 
limit of heating time, t,,,. 

Which shuffling mechanism is more ef- 
ficient, I or II? What is the best cutting 
policy? That is, if only N cuts are allowed in 
time t,,,, how should the cuttings be dis- 
tributed? To simplify matters, consider the 
following time cutting rules: 

t(i) = t,,,(ilN)" (234 

t(i) = tmax(l - ilN)" (23b) 
where t(i) is the time for the ith cut and a 
determines the density of cuts (a = 1 
corresponds to uniform cut times). Equa- 
tion 23a represents type A cuts (dense at 
the beginning) whereas Eq. 23b represents 
type B cuts (dense towards the end). The 
time between two consecutive, t,, cuts is 
t(i) - t(i - I ) ,  with t(0) = 0. Even in this 
simple framework, several cutting policies 
come to mind: AB (first N/2 cuts are of 
type A up to a time tmaX/2, type B for the 
rest of the time); AA (first N/2 cuts of type 

 it here 

Fig. 6. (A) Effect of stretching-and-cutting and 
cutting-and-flipping mechanisms on one-di- 
mensional heat diffusion. (B) Cutting time poli- 
cies: type A, AB, AA, and uniform. 
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A up to a time r,,,/2, followed by type A 
cuts started again for the rest of the time), 
and so on (Fig. 6B). 

Simulations reveal that the stretching- 
and-cutting mechanism is more efficient 
than the cutting-and-flipping mechanism. 
Between two consecutive cuts, heat diffus- 
es into the material, reducing the temper- 
ature gradient at the wall. With stretch- 
ing, this slowing down is more than com- 
pensated for by the increase in the gradi- 
ent due to stretching. In the flipping 
mechanism, on the other hand, the wall 
temperature gradient is determined by the 
temperature at the center of the fluid, 
which increases gradually, leading to the 
decrease of the flux at the wall. This 
supports the notion that chaos-stretch- 
ing and folding-is an efficient transport 
enhancement mechanism. 

Numerical examination of the various 
cutting policies shown in Fig. 6 shows that 
distributions with fast initial cuttings are 
better; distribution A is the best, AA and 
AB are the second best, uniform cutting 
times are third, BA and BB are fourth, and 
B is the least efficient. Equally spaced 
cutting times are bad because most of the 
heating occurs at the beginning and only a 
few cuttings are made during that time. 
On the other hand, initial cuttings that 
are too fast are not good because only a 
thin layer of fluid is heated in such a short 
time, and cuttings are wasted in shuffling 
much of the cold fluid within themselves. 
The best result with policy A corresponds 
to a = 4. 

More elaborate examples show similar 
behavior but also new physics. For exam- 
ple, the heating of a Newtonian fluid in 
a rectangular cavity using time-periodic 
flows reveals similar trends (50). Pkclet 
numbers play the role of cutting times 
(the Pkclet number measures the rate of 
transport of heat by advection to the rate 
of transfer by conduction, and is defined 
as Pe = VL/a, where V and L are charac- 
teristic velocity and time scales, respec- 
tively, and a is the thermal difisivity of 
the fluid). At low Pkclet numbers the 
thermal difision dominates and chaos 
plays almost no role. At large Pkclet num- 
bers a thin thermal boundary layer is 
formed at the walls; however, this is pre- 
cisely the region where the flow is typically 
less chaotic, and thus the effect of chaotic 
advection is reduced to shuffle portions of 
materials in a center region where the 
temperature is already uniform. The best 
results are obtained at intermediate Pkclet 
numbers; the temperature gradient is 
spread over a wider chaotic region and the 
shuffling action of the chaotic advection, 
taking parcels of hot fluid from the wall 
region and replacing it by cold center- 
region fluid, enhances the rate of heating 

considerably (Fig. 7). 
More practical application of these con- 

cepts is also possible. A possible example is 
the enhancement of transport away from 
surfaces containing small cavities, wedges, 
and indentations, as in the cleaning of sur- 
faces in microelectronic applications, or 
from pores connecting two fluids, such as in 
membranes subject to flow. Such flows, for 
low Reynolds numbers, lead to cells or a 
succession of cells of diminishing strength 
(51). The transport can be substantially 
increased if the flow is made chaotic. One 
such illustration is the removal of an impu- 
rity initially trapped in a deep open cavity by 
a jet whose angle is changed in a time- 
periodic manner. The process occurs in two 
stages. Most of the particles above a dividing 
KAM surface are removed within a few 
periods; the rest are removed by molecular 
diffusion and leakage through the KAM 
surface on a longer time scale. 

Flow Structuring 

Chaotic flows can be used to aggregate or to 
break and disperse. Experiments are avail- 
able in the case of fragmentation and disper- 
sion of viscous drops (52); studies of aggre- 
gation are at a computational level (53,54). 

Aggregation in chaotic flows is faster 
and goes further than in regular flows. In 
the simplest scenario, particles are initially 
placed randomly throughout the flow and 
coagulate, preserving their size. When two 
clusters get closer than a capture diameter 
d, they coagulate into a cluster whose mass 
is the sum of the two; this process results in 
a distribution of cluster masses. In regular 
flows coagulation stops because particles 

Pklet number 

Fig. 7. Enhancement factor (q) as a function of 
P6clet number for Nd = 16 with D = 0.1 for 
heating of a fluid in a closed square cavity 
using square wave-form wall motions. The total 
wall displacement. N, is defined as the prod- 
uct of the wall displacement per period, 0 ,  and 
the total number of periods, P; Nd = DP. The 
enhancement factor is defined as the ratio of 
the average temperature of the fluid using the 
chaotic flow to that produced by the application 
of the regular flow for the same value.of Nd (Nd 
is a measure of the cost incurred in moving the 
walls). The best results are obtained at interme- 
diate P6clet numbers. 

become segregated (55); however, no such 
limitation exists in the case of chaotic flows 
with disconnected islands. Clusters are kept 
well mixed by the chaotic flow (56), and 
the final result is a single cluster encompass- 
ing all particles. The cluster mass distribu- 
tion is self-similar with respect to time (57). 

Somewhat more complex is the case 
where particles bond rigidly to form grow- 
ing clusters that move as units. Chaotic 
flow, in this case, creates fractal aggregates 
reminiscent of those formed by difision- 
limited aggregation (58) and suggests pos- 
sibilities for tailoring of fractal structures 
by fluid flow. 

The case of drop elongation and break- 
up is a bit more complex. The simplest 
case corresponds to drops that do not 
interact with each other (Fig. 8). Under 
supercritical conditions-capillary num- 
bers above their critical value-droplets 
elongate into long filaments that break by 
flows driven by surface tension. This pro- 
cess results in a wide distribution of drop 
sizes (34). When properly scaled, drop size 

Flg. 8. Stretching, folding, and breakup of a 
fluid filament advected by a chaotic flow. In (A) 
the drops break by capillary wave instabillies; 
further stretching separates the droplets, which 
essentially behave independently of each oth- 
er. In (8) breakup occurs as the filament is 
being contracted; droplets in the process of 
being broken become stacked up as in the 
region marked with the white arrow. 
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distributions corresponding to different 
operating conditions and different viscos- 
ity ratios collapse into a single scaling 
curve. 

An understanding of these results relies 
on stretching and folding at large scales, on 
one hand, and on the details of fragmenta- 
tion processes driven by surface tension of 
small scales. on the other. Ex~erimental 
and computational investigations of the 
details of the breakup of a fluid filament 
reveal that drops are generated because of 
multiple breakup sequences around the 
neck region of a highly deformed filament 
(59). The largest drops are called mother 
drops; the other drops are referred to as 
satellites. Each pinch-off is associated with 
the formation of a neck. and the neck 
undergoes pinch-off; the mechanism is self- 
reoeating. 

u 

These ideas can be used to predict the 
d r o ~  size distribution observed in ex~er i -  
ments (52). Under appropriate conditions, 
drop stretching is passive: the increase in 
length of the fluid filament is identical to 
the stretch of a material element located at 
the center of the drop. Spherical drops of 
volume (4/3)7r03 stretch into a filament of 
length X and cross-sectional radius ro/X'12. 
Assume that such filaments break into N 
mother drops of radius r = co/k'12, where c, 
is nearly constant and proportional to ro. 
Mass conservation requires N = ( r , / ~ ) ~  = 
X312. AS a result, the total number of drops 
of radius r is given by dN(r) = h312dN(X). If 
we assume again that the distribution of 
stretching values is log-normal, the mother 
drop radii follows 

In addition, each mother drop carries a 
distribution of satellites of diminishing size. 
Each mother d r o ~  of radius r has associated 
one large satellite of radius r('), two smaller 
satellites of radius d2), four satellites of 
radius d3), and so on. Equation 24 can be 
used to predict the drop size distribution of 
all satellites, and the different predictions 
can be used to predict the overall drop size 
distribution (mother drops and satellites). 
Calculations show good qualitative agree- 
ment with experiments. 

Conclusions 

There is little doubt that chaos-based con- 
cepts can be used in the context of engi- 
neering applications (60). This article has 
focused on examples involving mixing and 
transport in viscous fluids. Many other 
possibilities are open, and further explora- 
tion is warranted. It is also apparent, 
however, that clear-cut engineering appli- 
cations are unlikely to emerge in ready- 
made form. The burden is now on engi- 

neers to adapt and modify what is already 
available or to develop new concepts and 
ideas. It should be also clear that the uses 
of chaos concepts should not be confined 
to the invention of new processes. The 
knowledge that chaos exists should pro- 
vide a new way of examining existing 
processes and a foundation for empirical 
designs and rules of thumb. 
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