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Heisenberg's uncertainty principle decrees 
that observations of a quantum system, no 
matter how delicately performed, cannot 
yield complete information on the system's 
state before observation. Therefore, if 
quantum systems are used to carry informa- 

' tion, an eavesdropper, or even the intended 
recipient, may be prevented from getting 
out all the information that the sender put 
in. This negative feature of quantum me- 
chanics has recently been put to positive 
use in the arts of private and discreet 
communication. 

The goal of privacy is illustrated by two 
~ersons wishing to communicate 
bver a public-channel such as 
newspaper ads, via coded messages 
no one else can understand. The 
subtler goal of discretion is illus- 
trated by two singles exploring the 
possibility of a date, who wish to 
communicate in a way that pro- 
tects them, not from eavesdrop- 
pers, but from each other. For 
example, if Alice likes Bob, Bob 
should only be able to learn this 
fact if he also likes Alice. Both 
privacy and discretion can be 
achieved by using quantum uncer- 
tainty to do what mathematics 

communications network. Classical cryp- 
tography offered no purely mathematical 
solution to this "key distribution problem." 
Meanwhile the only solution to the discreet 
communications problem appeared to be for 
Alice and Bob to confide their secrets in a 
trusted intermediary, who might later 
choose to blackmail them. 

All this was changed by PKC. The idea 
of PKC is for each user (Alice, for example) 
to randomly choose a pair of mutually 
inverse transformations-a scrambling 
transformation and an unscrambling trans- 
formatio-and to publish the directions 

that can be accurately read and copied 
(though not necessarily understood) by 
anyone having access to them. With quan- 
tum systems, this is no longer so, because 
measurements on a quantum system cannot 
extract complete information about the 
state in which it was prepared. The incom- 
plete accessibility of quantum information 
is illustrated bv the behavior of individual 
photons of light. 

Photons can be prepared in a continuum 
of polarization states including in particular 
the two rectilinear states, horizontal (c*) 
and vertical ( 3 ), and the two diagonal 
states, 45" ( 2 )  and 135" ('L). The two 
rectilinear states - and 3 can be distin- 
guished by one measurement, and the two 
diagonal states 2 and 'L can be distin- 
guished by another measurement; but if a 
rectilinear measurement is performed on a 
diagonal photon, the photon behaves ran- 
domly, acting half the time like - and half 
the time like 3 , and all information about 
its diagonal polarization is lost. Similarly, a 

random result is obtained and all 
information is lost if a diagonal mea- 
surement is performed on a rectilin- 
ear photon. Such "conjugate" pairs 
of states exist for any nontrivial 
quantum system. 

One might hope to learn more 
about a single photon's polarization 
by not measuring the photon direct- 
ly, but rather by using a device such 
as a laser to amplify it into a clone of 
many photons, then measuring 
these; but this hope is vain because 
the uncertainty principle introduces 
just enough randomness in the polar- 
htions of the daughter photons to - 

alone cannot do. ' A quantum bank no*, containing a secret set of polarized pho- I ""lify any advantage gained by ha'- 
Mathematics offers imperfect tons, cannot be by counterfeiters, who would disturb the ing more photons to measure. Limi- 

solutions to these problems, in photons by attempting to measure them. tatlons on the accuracy of measuring 
the form of public key cryptogra- quantum states thus imply limita- 
phy (PKC) ( 1 ) .  Before the intro- tions on copying them, and vice 
duction of PKC in 1976, private communi- for performing the former but not the latter. versa. 
cation over a public channel was thought to Anyone, including Bob, can then use Al- It can be seen that quantum information 
be impossible unless the two users had ice's public scrambling algorithm to prepare has a peculiar kind of conditional readabil- 
agreed beforehand on some random secret 
information that no one else knew. This 
information would serve as a cryptographic 
key, enabling Alice to scramble her mes- 
sages in a way that only Bob, knowing the 
same key, could unscramble. Such secret 
key cryptography can assure perfect, un- 
breakable privacy if the key is truly random, 
of the same length as the message being 
sent, and never reused to encrypt another 
message. Privacy thus appeared to be avail- 
able to diplomats, spies, and others having 
the means and foresight to share secret keys 
with their intended correspondents, but not 

a message that only she can unscramble. 
Similarly anyone, including Alice, can use 
Bob's public scrambling algorithm to pre- 
pare a message that only he can unscrarn- 
ble. Thus Alice and Bob can exchange 
secret messages even though they share no 
secret to begin with. Subsequently Yao (2) 
and others (3) showed how to use public 
key techniques for discreet communication 
without the help of a third party. Unfortu- 
nately PKC rests on unproved mithemati- 
cal assumptions, such as the difficulty of 
factoring large integers, and the entire ed- 
ifice of privacy and discretion built upon it 

ity: a message consisting of rectilinear and 
diagonal photons can be accurately read or 
copied, but only by someone who knows 
some of the information that went into 
forming the message, namely which of the 
photons are rectilinear and which are diag- 
onal. 

This conditional readability was first put 
to use by Wiesner (4) in the impractical 
invention shown in the figure: quantum 
money that is physically impossible to copy. 
Quantum money would not need the wam- 
ing printed on French money, of life impris- 
onment for counterfeiters, because the 

to ordinary impromptu users of a public could come crashing down tomorrow. crime would be impossible to commit. A 
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Watson Research Center, YorMown Heights, NY proaches described above tacitly assume larized photons in a secret random sequence 
10598. that messages are in some physical form of polarization states ( 3 , c*, 2, or 'L), 
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stored in individual perfectly reflective mir- 
ror-lined boxes capable of holding the pho- 
tons indefinitely without loss (possible in 
principle, but not in practice). Each bank 
note would also have a serial number urint- 
ed in ordinary ink, which would be record- 
ed. alone with that bank note's secret list of - 
polarizations, in a book made available to 
banks but not the general public. The 
sequence of polarizations can thus be accu- 
rately read and checked by banks, who 
know the secret information. but can nei- 
ther be read nor copied reliably by a would- 
be counterfeiter. who does not. 

Quantum money is impractical because 
of the difficulty of storing photons. Howev- 
er, an invention very similar to quantum 
money, but using photons in flight, offers a 
practical solution to the key distribution 
problem mentioned earlier, and thus a 
means for two parties who share no secret 
initially to be assured of the privacy of their 
subsequent communications (5). To per- 
form quantum key distribution, Alice and 
Bob use a quantum channel, through which 
they send polarized photons, in conjunc- 
tion with a classical uublic channel. 
through which they sen2 ordinary mes: 
sages. The eavesdropper, Eve, is free to 
tamper with the photons in the quantum 
channel and can read, but not alter, the 
messages in the public channel. 

Alice begins by sending Bob a random 
sequence of the four kinds of photons, ++, 
$ , 2, and % , and Bob decides randomly 

for each  hoto on whether to measure its 
rectilinear or diagonal polarization. Of 
course this s~oils  half the data. because half 
the time ~ o b  will have made the wrong 
type of measurement. But now Bob and 
Alice use their public channel to locate and 
discard the bad data, without compromising 
the remaining good data. To do this, Bob 
announces publicly which types of measure- 
ments he made, rectilinear or diagonal, but 
not the measurement outcomes; Alice re- 
plies, telling him which of his measure- 
ments were of the correct type; and both 
parties agree to keep only those instances, 
discarding the others. If no eavesdropping 
has occurred, the result should be a shared 
secret, which can be interpreted as a binary 
key by letting ++ and 2 represent 0 and $ 
and % reuresent 1. - L 

If Eve attempts to intercept one or more 
photons in flight, measure them, and re- 
send forged copies to Bob, she faces the 
same uroblem as the would-be counterfeiter 
of quantum money: some of her measure- 
ments will be wrong, and will result in 
inaccurate forgeries that behave randomly 
when later measured by Bob, introducing 
errors into Bob and Alice's supposedly 
shared data. The final step of quantum key 
distribution is therefore for Alice and Bob 
to test their data for discrepancies, for 

example, by publicly comparing some of it. 
If they find discrepancies, they have reason 
to suspect eavesdropping and should discard 
all their data and start over with a fresh 
batch of photons. Otherwise, they can be 
reasonably sure that those parts of their data 
not disclosed in the public comparison are 
indeed a shared secret and can therefore be 
used as a secret key to encrypt subsequent 
meaningful messages. 

An improved version of the above 
scheme, able to cope with practical prob- 
lems such as detector noise, has been im- 
plemented over short distances with a light 
beam (6), and there is no obstacle other 
than expense to implementing it over arbi- 
trarily long distances with a light beam, or 
over a moderate length of optical fiber (a 
long fiber would require amplifying the 
quantum signal in transit, which is equiva- 
lent to eavesdropping). Although it re- 
quires a special and somewhat inconvenient 
physical channel, quantum key distribution 
offers a solution to the private communica- 
tion problem based on fundamental laws of 
physics, rather than on unproved mathe- 
matical assumutions. 

During the eighties computer scientists 
showed that any two-party problem dis- 
creetly solvable with the help of an inter- 
mediary could be discreetly solved by the 
two parties alone using PKC. They also 
showed (7, 8) that all such problems could 
be reduced to a simple, almost pointless- 
seeming primitive called oblivious transfer 
(9) which consists of Alice sending Bob a 
one-bit message in such a way that it has 
exactly a half chance of arriving, and only 
he will know whether it did. This task 
involves discretion (Alice is not supposed 
to learn whether the message arrived) and it 
could of course be performed by an inter- 
mediary; but if Alice and Bob could perform 
it by themselves, they could solve any other 
two-party problem by themselves with max- 
imum discretion. 

An obvious auantum wav to obliviouslv 
transfer a bit is for Alice to encode it in a 
photon and send it to Bob, randomly deciding 
whether to use a rectilinear photon (where ++ 

= 0 and 5 = 1) or a diagonal one (where 2 
= 0 and % = 1). Bob then chooses randomly 
whether to measure the photon rectilinearly 
or diagonally. If he makes the right measure- 
ment, he learns Alice's bit; otherwise he gets 
a random result. Finallv Alice tells him 
whether the photon she sent was rectilinear or 
diagonal, thereby allowing him (but not her) 
to learn whether the transfer succeeded. This 
simple scheme described has various flaws (for 
example, Bob can get too much partial infor- 
mation by measuring the polarization along an 
intermediate axis such as 22.5') which can 
overcome at the cost of making the scheme 
more complicated and using more photons. 

A fully practical version of quantum 

oblivious transfer has been described (10) 
and can be implemented with apparatus 
similar to that used for quantum key distri- 
bution. Quantum oblivious transfer has the 
advantage of being useful over short dis- 
tances (discreet decisions are often sought 
by parties occupying the same room), and 
the disadvantage of being rather inefficient 
mathematically, with known practical 
schemes requiring millions of photons to be 
individually sent and received to reach 
even simple decisions. 

We have not yet mentioned the most 
famous quantum phenomenon involving 
information: the Einstein-Podolsky-Rosen 
(EPR) effect, which generates correlated 
random outcomes simultaneously in two 
remote places, in a way that cannot be 
explained ("Bell's inequality") by hypothe- 
sizing a common random cause in the past. 
Although the experimental verification of 
violations of Bell's inequality are the most 
celebrated evidence of the correctness of 
quantum mechanics, the EPR effect has had 
surprisingly modest consequences so far for 
quantum cryptography. Some practical 
quantum key distribution schemes (1 1, 12) 
use EPR states as a matter of convenience, 
and. if it were ~ossible to store ~ho tons  (or 
other conjugate states), EPR schemes 
would offer a secure way to store secret keys 
after distribution, which non-EPR schemes 
cannot (13). Thus the EPR effect appears 
most useful in the positive role of confirm- 
ing quantum mechanics, while the uncer- 
tainty principle is more useful in the nega- 
tive role of preventing unwanted disclosure 
of information. 
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