
taining sequences (Table 1). One possible 
explanation is that plants have several pro- 
lyl hydroxylases that differ in specificity. 
Although plant prolyl-4-hydroxylases differ 
from the vertebrate enzyme in specificity 
(14), enzymes that recognize different sub- 
strate sequences in a single plant species 
have not been found. 

Alternatively, prolyl hydroxylases from 
plants might recognize the conformation of 
the substrate. A common feature of the 
sequences in Table 1 is the clustering of the 
4Hyp residues. Studies of the structure of 
HRGPs and AGPs performed by spectro- 
scopic methods (15) and studies of model 
peptides performed by x-ray methods (16) 
have shown that sequences that contain 
clusters of imino acids form poly (L-proline) 
tvue I1 helices. It is this conformation that 

1 A 

is recognized by the prolyl-4-hydroxylase of 
Vinca rosea (1 7). 

We conclude that CHN-A and CHN-B 
are examples of a class of HCPs that differ 
from those described previously in specific 
ways. (i) CHN-A and CHN-B are vacuolar 
enzymes ( 9 ,  whereas other HCPs are pre- 
dominantly secreted, structural proteins (2, 
4). (ii) The 4Hyp content of chitinases is 
much lower than in other HCPs, and hy- 
droxvlation takes dace exclusivelv at a few 
uniq"e Pro residue's in a short spa& joining 
two Pro-containing domains. (iii) Unlike 
other plant HCPs, the 4Hyps in chitinase 
are not 0-glycosylated. 

4Hyps in repeated sequences stabilize 
the polyproline I1 conformation of colla- 
gen, HRGP, and AGP (1, 15). The func- 
tion of the 4Hyps in chitinase is not 
known. One possibility is suggested by the 
structural homology of chitinase and bacte- 
rial P-1,4-glucanases, which have a lectin 
domain connected to a catalytic domain by 
a spacer that contains repeats of the dipep- 
tide Thr-Pro (18). Deletion of the lectin 
domain or of the spacer changes the speci- 
ficity of this enzyme for different physical 
forms of cellulose. Modification of the spac- 
er in chitinase by prolyl hydroxylation at 
specific sites might alter the relative posi- 
tions of the lectin and catalvtic domains 
and, hence, modulate enzymk activity or 
specificity. The tobacco chitinases are 
abundant regulated proteins particularly 
well suited for the study of the function and 
specificity of prolyl hydroxylation. The fact 
that these are intracellular enzymes also 
raises the possibility that limited prolyl 
hydroxylation of proteins is a more general 
phenomenon than previously recognized. 
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Calcium-Dependent Transmitter Secretion 
Reconstituted in Xenopus Oocytes: Requirement 

for Synaptophysin 

Janet Alder, Bai Lu, Flavia Valtorta, Paul Greengard, Mu-ming Poo* 
Calcium-dependent glutamate secretion was reconstituted in Xenopusoocytes by injecting 
the oocyte with total rat cerebellar messenger RNA (mRNA). Co-injection of total mRNA 
with antisense oligonucleotides to synaptophysin message decreased the expression of 
synaptophysin in the oocyte and reduced the calcium-dependent secretion. A similar effect 
on secretion was observed for oocytes injected with total mRNA together with an antibody 
to rat synaptophysin. These results indicate that synaptophysin is necessaryfor transmitter 
secretion and that the oocyte expression system may be useful for dissecting the molecular 
events associated with the secretory process. 

Synaptic transmission between nerve cells 
depends on impulse-triggered, Caz+-depen- 
dent transmitter secretion from the presyn- 
aptic nerve terminal ( I ) ,  a process poorly 
understood at the molecular level. Physio- 
logical studies in a variety of systems have 
provided important clues to the process of 
synaptic vesicle exocytosis and its regula- 
tion. The application of protein purifica- 
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tion as well as molecular cloning techniques 
to the study of synaptic vesicle proteins has 
led to the identification and characteriza- 
tion of the major components of these 
organelles. However, attempts, to deter- 
mine the precise function of the synaptic 
vesicle proteins have been hampered by the 
inaccessibility of the small nerve terminal 
to experimental manipulations. We have 
now examined the role of synaptophysin, a 
major integral membrane protein of synap- 
tic vesicles (2), in transmitter secretion by 
reconstituting Caz+-dependent transmitter 
release in Xenopus oocytes. The use of 
Xenopus oocytes for expressing neuronal 
properties in a millimeter-size cell (3) offers 
an opportunity for studying secretion mech- 
anisms in vitro. Recently, Caz+-dependent 
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secretion of acetylcholine (ACh) was 
shown to be expressed in Xenopus oocytes 
that were injected with total mRNA from 
electric lobe tissue of Torpedo (4). In the 
present report, we show that Xenopus 
oocytes injected with rat cerebellar mRNA 
are capable of secreting the excitatory 
transmitter glutamate in a Ca2+-dependent 
manner and that this property depends on 
the expression of synaptophysin. 

For reconstitution of the secretion 
mechanism in Xenopus oocytes, we started 
with total mRNA from nervous tissue, be- 
cause the entire complement of the mole- 
cules involved in neurosecretion is un- 
known. Cerebellum was chosen as the 
source of mRNA for its richness in gluta- 
matergic granule cells (5). Total mRNA 
was isolated from rat cerebellum by the 
guanidinium-thiocyanate-phenol-chloro- 
form method followed by selection of poly- 
adenylated RNA. Fifty nanograms of isolat- 
ed total mRNA dissolved in 50 nl of water 
were injected into individual Xenopus 
oocytes (stage VI), and experiments were 
performed 2 days later (6). Neurons can 
synthesize a Ca2+-dependent, releasable 
pool of glutamate from the precursor gluta- 
mine in synaptosomes, in tissue slices, and 
in vivo (7), and Xenopus oocytes express 
amino acid transport mechanisms at higher 
than endogenous levels (8) in their plasma 
membranes when injected with total 
mRNA from various nervous tissues (9). 
Figure 1A shows a time course of 13H]- 
labeled glutamine uptake into oocytes 2 
days after injection with cerebellar mRNA. 
Time-dependent glutamine uptake, which 
saturated by 2 hours of incubation, was seen 
in mRNA-injected oocytes, but not in con- 
trol, water-injected ones (1 0). This gluta- 
mine transport system expressed in the 
oocyte membrane was used to load radioac- 
tive glutamine into the oocytes, where it 
could be converted to glutamate and incor- 
porated into the transmitter pool. 

We assayed the secretion of glutamate 
by measuring the release of radioactivity 
into the medium in response to extracellu- 
lar application of the Ca2+ ionophore 
A23187, in the presence of various concen- 
trations of external Ca2+ (1 1). As shown in 
Fig. IB, there was a clear Ca2+ dependence 
in the release of radioactivity from mRNA- 
injected oocytes but not from control 
oocytes. The bar graph in Fig. 1E depicts 
normalized data from 42 release assays per- 
formed on iniected oocvtes. The radioactiv- 
ity released was dependent on external 
Ca2+ ([Ca2+],); at 0 mM [Ca2+], the re- 
lease was significantly lower than that at 5 
and 10 mM. High [Ca2+], by itself did not 
induce secretion. because at 10 mM ICa2+1.. .u 

the release was significantly lower in the 
absence of ionophore than in its presence. 
The residual secretion observed at 0 mM 

[Ca2+], appears to be caused by ionophore- 
induced release of CaZ+ from internal 
stores; at 0 mM [Ca2+], without ionophore, 
residual secretion was significantly lower. 
Furthermore, after preincubation of the 
oocytes in 1 mM, 1,2-bis(2-aminophen- 
oxy)ethane-N, N, N', Nr-tetraceticacid, ace- 
toxymethyl ester (BAPTA-AM) , which is 
known to reduce cytosolic Ca2+ to a low 
level (12), the release at 0 mM [Ca2+], 
remained low even in the presence of ion- 
ophore. Taken together, these results indi- 
cate that the released radioactivity from the 
mRNA-injected oocytes was predominantly 
Ca2+-dependent. 

As a test for the specificity of the secre- 
tion mechanism, parallel experiments were 
carried out with total rat liver mRNA (6). 
Oocytes injected with liver mRNA also 
expressed the glutamine uptake system (Fig. 
IC). However, these oocytes did not show 

more or Ca2+-dependent release of radioac- 
tivity as compared to uninjected, control 
ones (Fig. ID). 

We examined the synthesis and distribu- 
tion of synaptophysin in oocytes injected 
with cerebellar mRNA by immunocyto- 
chemistry. Synaptophysin is a vesicle mem- 
brane protein specifically localized to neu- 
rons and neuroendocrine cells (2). Its pres- 
ence on the outer surface of the axolemma 
after nerve stimulation provides support for 
the vesicle hypothesis of transmitter release 
(1 3). Immunofluorescence microscopy of 
oocyte sections revealed the presence of a 
punctate pattern of synaptophysin staining 
dispersed throughout the cytoplasm (14). 
The localization of synaptophysin in 
oocytes was further studied by immunoelec- 
tron microscopy with colloidal gold (15). 
Most gold particles were associated with 
small (40 to 80 nm) clear vesicles that were 

Fig. 1. Transmitter up- A C 
take and release mech- 
anisms reconstituted in 
Xenopus oocytes. The 20 

oocytes were injected 
with total cerebellar poly- 10 

adenylated [poly(A)+] .: 
mRNA 2 days before $ 
the experiments. (A) E Time ( min ) 
Time course of the up- 
take of [3H]glutamine. 8 D - 
Oocytes were incubat- 
ed in 1 pM [3H]glu- u 

--O-- Cerebellar mRNA ; ; l o o o ~  lIl!/ Er; 

tamine, and uptake was 3 g 
assayed as described 2 
(10). Uptake was call .$ $ 500 

culated for groups of 2 0 " "  three oocytes, and y, 8 -------- ..----- 
mean values + SEM for - o 5 lo  o 5 lo  

three separate experi- External calcium ( mM ) 

ments were presented. 
(B) ca2+-dependent 

E Radioactivity released ( % of standard ) release of radioactivity 
from oocytes loaded 0 20 40 60 80 100 

with [3H]glutamine. r o m~ ca2+ ( 4 2  k 
Oocytes were incubat- wifi 
ed with [3H]glutamine ionophore 

overnight. In each ex- 1 ::x::t - 
periment, groups of five 
oocytes were treated for 
10 min in 10 JLM Ca2+ 

Without i ' mM '<+ 
ionophore 

ionophore (A231 87) in 10 mM Ca 
W~th 

ORll solution containing ~onophore 2+ 

various [Ca2+],, and the 
+ BAPTA O mM 

supernatant was col- 
lected for scintillation spectrophotometry ( I  1). For each concentration of [Ca2+],, the mean value of 
release from control oocytes was subtracted from that of mRNA-injected oocytes at that concentra- 
tion. For each experiment, the release above the mean control value was normalized by setting the 
mean control value as 100%. Data represent the average + SEM from four experiments. The 
difference between values at 0 and 5 or 10 mM [Ca2+], is statistically significant (P < 0.05, one-tail 
t test). (C) Uptake of glutamine by oocytes injected with liver mRNA (n = 3). Same protocol as in (A). 
Error bars represent SD. (D) Release of radioactivity from liver mRNA-injected oocytes loaded with 
[3H]glutamine (n = 4). Same protocol as in (B). (E) Calcium- and ionophore-dependent release of 
radioactivity from oocytes injected with cerebellar mRNA. The data were obtained by subtracting the 
radioactivity released from water-injected, control oocytes, and normalized by the value at 10 mM 
[Ca2+],. The bars represent the mean value + SEM, and the number of experiments is shown inside 
the bars. The differences among the values at 0,5,  and 10 mM [Ca2+], with ionophore were significant 
[P < 0.001, analysis of variance (ANOVA)]. 
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concentrated in regions of the cytoplasm 
from which other organelles were excluded 
(Fig. 2). Mitochondria and yolk granules 
were virtually devoid of labeling. The syn- 
aptophysin-positive vesicles resembled in 
size and appearance the synaptic-like mi- 
crovesicles previously described in neuroen- 
docrine cells (1 6). The expression of syn- 
aptophysin does not induce the formation 
of these microvesicles, because a population 
of microvesicles virtually identical to those 
to which synaptophysin is targeted was also 
present in control, uninjected oocytes. 
However, in the latter case the vesicles 
were not labeled by synaptophysin antibod- 
ies. These results are consistent with previ- 
ous findings indicating that nonneuronal 
cells, when transfected with synaptophysin 
cDNA or microinjected with its mRNA, 
correctly incorporate the protein into mem- 
branes of preexisting vesicles that structur- 
ally resemble synaptic vesicles (1 7). 

The primary sequence of rat synapto- 
physin has been determined (18); it has 
four transmembrane regions and a cytoplas- 
mic COOH-terminal domain that contains 
the major antigenic site (1 9). Although the 
biochemical properties and cellular localiza- 
tion of synaptophysin have been studied 
extensively, little is known about its biolog- 
ical function. Using the reconstituted se- 
cretion system in %pus oocytes, we ex- 
amined directly whether the presence of 
synaptophysin is obligatory for Ca2+de- 
pendent secretion. 

The expression of synaptophysin was 
blocked by co-injection of antisense oligo- 

Fig. 2. Distribution of synaptophysin immunore- 
activity in control (A) and mRNA-injected (9) 
oocytes. Ultrathin frozen section were prepared 
(15) and stained with immunoglobulins (IgGs) 
prepared from a rabbit antiserum raised against 
frog synaptophysin, followed by antibody to rab- 
bit lgGs conjugated with 4-nm colloidal gold 
particles. A population of microvesicles is spe- 
cifically labeled in the mRNA-injected oocytes. 
Mitochondrion, m. Calibration bar, 0.5 pm. 

nucleotides to synaptophysin with total cer- 
ebellar -A. Antisense oligonucleotides 
injected into Xenopus oocytes hybridize to 
their complementary mRNA and activate 
RNase H, which in turn specifically digests 
oligonucleotide-bound endogenous and for- 
eign messages (20). Sequences correspond- 
ing to the first 19 nucleotides of rat synap- 
tophysin in either the sense or antisense 
configuration (2 1) were co-injected with 
the same amount of total -A (6), and 
the expression of synaptophysin was deter- 
mined by Western blot (22) (Fig. 3A). 
Cerebellar -A-injected oocytes ex- 
pressed synaptophysin, whereas the unin- 
jected ones did not. The antisense oligonu- 
cleotide co-injection consistently dimin- 
ished synaptophysin expression as com- 
pared to oocytes co-injected with sense 
oligonucleotides. The expression of synap- 
tobrevin (23) was also induced by cerebel- 
lar mRNA injection (Fig. 3B), thus sug- 
gesting that other neuronal proteins may 
be present in the injected oocyte. Howev- 
er, the expression of synaptobrevin was 
not affected by antisense oligonucleotides 
to synaptophysin, indicating the specific- 
ity of the antisense oligonucleotides. The 
molecular weights of the single protein 
bands observed were slightly higher than 
those of purified rat synaptophysin and 
synaptobrevin, presumably due to post- 
translational modification of the rat gene 
product in Xenopus oocytes. Indeed, am- 
phibian synaptophysin has a higher appar- 
ent molecular weight than mammalian 
synaptophysin (1 3). 

When the radioactivity release assays 
were performed on oocytes co-injected with 
total rat cerebellar -A and antisense 
oligonucleotides to synaptophysin, we 
found that at 10 mM [Ca2+], the iono- 
phore-induced release was reduced to an 
average of 37.6 -t 8.8% SEM (n = 38) of 
that observed for oocytes injected with 
-A alone (Fig. 4A). The inhibition 
was sequence-specific because sense oligo- 
nucleotides were ineffective in inhibiting 
secretion [86.7 + 10.8% (SEM)] (n = 23). 
When 2.5 ng of synaptophysin antibody 
(SY38) (6) was co-injected with total 
-A, we again found marked reduction 
in secretion 113.7 + 6.0% of control 
(SEM)] (n = 29). The antibody effect was 
specific because co-injection of control an- 
tibody to glial fibrillary acidic protein 
(GFAP) (6) was much less effective 173.7 + 
8.5% of control (SEM)] (n = 20). This 
marked blockade of Ca2+dependent secre- 
tion by antisense oligonucleotides and syn- 
aptophysin antibody was further tested on 
another reconstituted secretion system: the 
ACh release mechanism in oocytes injected 
with Torpedo electric lobe -A (6). 
Oocytes injected with electric lobe mRNA 
were loaded with radioactive acetate, and 

Fig. 3. Co-iijection of A , 3 1 5 

antisense synaptophy- 
sin oligonucleotides with 
total cerebellar mRNA 
reduced the expression - 
of synaptophysin but - 
not of synaptobrevin. 
(A) Western blot of 
mRNA-injected oocytes 
stained for synaptophy- 
sin. Individual mRNA- 
injected oocytes were : 
sonicated in homogeni- 
zation buffer and centri- 
fuged, and total protein 
was separated by SDS- C 

PAGE. Monoclonal rat 
synaptophysin anti- 
body followed by 1251- 
labeled protein A was 
used for detection (22). 
Lane 1, uninjected 
oocyte; lane 2, cerebellar mRNA-injected 
oocyte; lane 3, cerebellar mRNA plus antisense 
oligonucleotides; lane 4, cerebellar mRNA plus 
sense oligonucleotides; and lane 5, rat synap- 
tophysin standard (10 pg). (B) Western blot of 
cerebellar mRNA-injected oocytes stained with 
rat synaptobrevin antiserum. Arrow indicates 
position of rat brain synaptobrevin. Lanes 1 to 3 
are the same as in (A). 

release assays were performed; Ca2+-de- 
  en dent secretion of ACh was observed as 
previously reported (4). Using antisense 
oligonucleotides corresponding to the first 
19 bases of Torpedo synaptophysin (21) 
and a polyclonal frog anti-synaptophysin 
antibody (24), we observed similar inhibi- 
tion of release as seen in the glutamate 
system (Fig. 4B). 

Finally, as an independent monitor of 
glutamate secretion from mRNA-injected 
oocytes, a fluorometric assay was used (25). 
We examined the time course of glutamate 
release by incubating oocytes in a solution 
containing glutamate dehydrogenase and 
nicotinamide adenine dinucleotide phos- 
phate (NADP+). An increase in fluores- 
cence occurs when glutamate is released 
and NADPH is formed. When mRNA- 
injected oocytes were stimulated with Ca2+ 
ionophore, the fluorescence showed detect- 
able increase after a lag of about 30 min and 
reached an maximum after 80 min (Fig. 
5A). Secretion was inhibited by the ab- 
sence of external Cat+ or the co-injection 
with antisense oligonucleotides to synapto- 
physin. Although the basis for the lag in 
secretion on stimulation is not known, 
these results clearly confirm the conclusion 
that a large amount of endogenous gluta- 
mate is recruited for release in the mRNA- 
injected oocytes. Figure 5B depicts the final 
glutamate content in the supernatant of 
oocytes stimulated in a petri dish for 80 min 
as determined by fluorescence intensity. 
Water-injected oocytes did not release sig- 
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nificant glutamate. The release of gluta-

mate was Ca2+-dependent, since in the 

absence of [Ca2+]0, fourfold less fluores­

cence was observed. In addition, antisense 

oligonucleotides to synaptophysin resulted 

in decreased glutamate release, whereas 

sense oligonucleotides had no effect on 

release. These data support the findings 

from the radioactivity release assay and 

confirm that synaptophysin is necessary for 

glutamate release. We found that mRNA-

injected oocytes have a total glutamate 

content similar to that of water-injected 

oocytes (—20 nmol), even after preloading 

with glutamine, suggesting that the amount 

of endogenous glutamate greatly exceeds 

the amount of glutamate incorporated from 

exogenous glutamine. 

Our experiments suggest that synapto­

physin is required for Ca2+-dependent se­

cretion of neurotransmitter to occur. Be­

cause we have shown that in mRNA-inject-

ed oocytes synaptophysin is targeted to a 

population of microvesicles of unidentified 

function, it is conceivable that, on expres­

sion of synaptophysin (and possibly of other 

synaptic vesicle proteins), these vesicles 

acquire the ability to release neurotrans­

mitter in a Ca2+-dependent fashion. Previ­

ous biochemical studies have shown that 

several synaptophysin subunits are linked to 

each other to form a homooligomer (26) 

associated with an as yet unidentified low 

molecular weight protein (27), Such a ho­

mooligomer of synaptophysin could bind to 

the plasma membrane and facilitate fusion 

of the synaptic vesicle with the plasma 

membrane (28), Furthermore, synapto­

physin may be responsible for the formation 

of fusion pores during vesicular exocytosis, 

since purified synaptophysin has been re­

ported to form gap junctionlike channels in 

black lipid membranes (29). 

In conclusion, our study provides the 

first indication of a functional role for syn­

aptophysin in transmitter secretion and 

demonstrates that Xenopus oocytes can be 

used as an accessible in vitro system for 

dissecting the role of specific molecules in a 

complex cellular process, such as that in­

volved in Ca2+-dependent neurosecretion. 
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these receptor subunits contain consensus 
sites for protein phosphorylation by PKA, 
protein kinase C, and protein tyrosine ki­
nases (5). 

To examine directly the phosphoryla­
tion of GABAA receptors, we expressed the 
ax and ^x or the al9 Pp and 72 subunits in 
human embryonic kidney 293 (HEK293) 
cells (6-9). These cells were labeled with 
[35S]methionine, and the GABAA recep­
tors were isolated by immunoprecipitation 
with antibodies to a bacterial fusion protein 
containing the major intracellular domain 
of the Pi subunit (anti-p^ (Fig. 1A) (9). 
The ax subunit migrated as a 52-kD pro­
tein, whereas the ^x subunit migrated as a 
58-kD protein with a proteolytic break-
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7-Aminobutyric acidA (GABAA) receptors are ligand-gated ion channels that mediate 
inhibitory synaptic transmission in the central nervous system. The role of protein phos­
phorylation in the modulation of GABAA receptor function was examined with cells tran­
siently transfected with GABAA receptor subunits. GABAA receptors consisting of the a1 

and p1 or the a1f p v and y2 subunits were directly phosphorylated on the p1 subunit by 
adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase (PKA). The phos­
phorylation decreased the amplitude of the GABA response of both receptor types and the 
extent of rapid desensitization of the GABAA receptor that consisted of the a1 and p., 
subunits. Site-specific mutagenesis of the serine residue phosphorylated by PKA com­
pletely eliminated the PKA phosphorylation and modulation of the GABAA receptor. In 
primary embryonic rat neuronal cell cultures, a similar regulation of GABAA receptors by 
PKA was observed. These results demonstrate that the GABAA receptor is directly mod­
ulated by protein phosphorylation and suggest that neurotransmitters or neuropeptides that 
regulate intracellular cAMP levels may modulate the responses of neurons to GABA and 
consequently have profound effects on synaptic excitability. 


