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Distributed Neural Network Underlying Musical 
Sight-Reading and Keyboard Performance 

Justine Sergent,* Eric Zuck, Sean Terriah, Brennan MacDonald 
Music, like other forms of expression, requires specific skills for its production, and the 
organizationand representationof these skills in the human brain are not well understood. 
With the use of positron emission tomography and magnetic resonance imaging, the 
functional neuroanatomy of musical sight-reading and keyboard performance was studied 
inten professionalpianists. Reading musicalnotationsandtranslatingthese notationsinto 
movement patternson a keyboard resulted in activationof cortical areas distinct from, but 
adjacent to, those underlying similar verbal operations. These findings help explain why 
brain damage in musicians may or may not affect both verbal and musical functions 
depending on the size and location of the damaged area. 

Music is a message comprising combina- both involve fine sequential motor activity 
tory rhythmic patterns of discrete pitches for their production; both are constructed 
communicated by a composer to a listener, of perceptually discrete sounds that can be 
often through an interpreter. Music and represented in a writing system. Like 
speech have certain aspects in common: speech, music is governed by culture-de-
Both are used expressively and receptively; pendent combinatorial rules; that is, one 

can speak of a musical grammar in the mind
Cognitive Neuroscience Laboratory, Montreal Neuro-
logical Institute, McGill University, Montreal, Quebec, of the composer, performer, and listener 
Canada H3A 284. that in many respects parallels the grammar 
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of language (I). Accordingly, conjoint im-
pairment of verbal (aphasia) and musical 
(amusia) abilities is a frequent outcome of 
damage to the left cerebral hemisphere in 
musicians (2). However, speech and music 
also differ in important aspects: A musical 
phrase does not convey the same sort of 
information that a verbal sentence does; it 
evokes feelings or emotions-patterns of 
body tension and release-rather than re-
ferring to specific ideas or objects. Its gram-
mar is organized in terms of harmony and 
counterpoint rather than patterns of gram-
matical categories such as noun and verb. 
Musical notation is graphically, symbolical-
ly, and functionally different from the al-
phabetic writing system (3, 4). Consistent 
with these distinctions, aphasia is not nec-
essarily associated with impaired musical 
abilities in musicians (5). 

The existence,of a dissociation between 
verbal and musical disturbances suggests a 
relative functional independence of the 
neurobiological substrates of each ability 
(6). Whereas much is known about the 
cerebral re~resentationsof verbal functions 
through neuropsychological studies of apha-
sics (7) and positron emission tomography 
(PET) imaging of normal subjects perform-
ing verbal tasks (8),the neural organization 
of musical skills and performance has been 
more difficult to uncover, mainly because of 
the rarity of brain-damaged musicians. We 
thus used PET measurement of regional 
cerebral blood flow (rCBF) in ten ~rofes-
sional pianists (9) to study the neurobiolog-
ical substrates of two articular skills uniaue 
to musicians: their ability to sight-read a 
score and to translate the notations into 
movement patterns on a keyboard to pro-
duce a musical performance. 

To functionally isolate the component 
operations underlying sight-reading and pi-
ano performance, we used subtractive PET 
methodology (8). We also applied a tech-
nique that combines the functional infor-
mation derived from PET with the anatom-
ical information of the subiects' brains ob-
tained by magnetic resonance imaging 
(MRI), a procedure that increases the pre-
cision of functional localizations (10). 

The subjects participated in seven task 
activation conditions, in a counterbalanced 
order (1 1). The main experimental condi-
tion consisted of the oresentation. on a TV 
monitor located above the subject's head, 
of the score of a little known partita written 
by J. S. Bach, which each subject played on 
a kevboard with the right hand while lis--
tening to the performance (12). Each of the 
other conditions served as control to isolate 
the component operations of the main task 
and thev consisted of (i) visual fixation of~, 

the lit screen, (ii) listening to ascending 
and descending musical scales played on a 
piano, (iii) playing ascending and descend-

ing scales on the keyboard with the right 
hand while listening to what was played, 
(iv) presentation of a single dot in one of 
four auadrants of the screen and manual 
responses as a function of dot location, (v) 
reading a musical score presented on a 
screen, and (vi) reading a musical score 
presented on the screen and listening to its 
performance played on a piano (13). 

We analyzed the data by comparing state 
activation in paired tasks after stereotaxic 
image-averaging across subjects to increase 
the signal-to-noise ratio in the subtraction 
images (14). The significant foci of activa-
tion resulting from CBF changes related to 
task differences are presented in Table 1 in 
terms of cerebral stereotaxic coordinates. 

Each of the three components of the 
main experimental task (playing, listening, 
and reading) engaged specific cortical areas 
that were initially isolated through analysis 
of the control tasks (Fig. 1). Playing the 
scales with the right hand (task iii) activat-
ed the left motor cortex (area 4). and the,, 

right cerebellum corresponding to the mo-
tor representation of the right hand, and of 
the left premotor cortex (area 6). Activa-
tion related to listening to musical scales 
was detected in the secondary auditory cor-
tex of both hemispheres (area 42) and in 

the superior temporal gyrus of the left hemi-
sphere (area 22), and this obtained whether 
the scales were played to the subject (task 
ii) or by the subject (task iii). Listening to 
a musical piece activated the same cortical 
areas but also engaged the right superior 
temporal gyrus, indicating a bilateral in-
volvement of the temporal cortex that was 
not detected in the scale-listening task. 

When the subjects read a musical score 
(task v) without listening or playing, there 
was bilateral activation of the extrastriate 
visual areas, as expected by requirements of 
processing visual information. However, 
the areas in the left lingual and fusiform gyri 
normally engaged in the visual processing of 
words (6) were not activated by the musical 
notations. Instead, the left occipitoparietal 
junction was recruited, consistent with the 
participation of the dorsal visual system in 
spatial processing (!5, 16). In contrast to 
word reading, the relevant information 
contained in musical notations is derived 
not through feature analysis of the notes but 
through analysis of the spatial location of 
the notes and of their relative height sepa-
ration on the staff which is directly related 
to pitch intervals (4, 17). 

The addition of listening to score read-
ing (task vi) produced further activation 

Table 1.Significant foci of activation derived by paired activation subtraction. Coordinates of peak 
activation are expressed in millimeters (14):X represents the medial-lateral axis (negative,left), Y 
the antero-posterioraxis (negative,posterior),and Zthe dorsoventral axis (negative,ventral).The 
Brodmann's and cortical area corresponding to the coordinates are also shown. 

Brodmann's 
area Cortical area 

Listening to scales minus visual fixation 
-13 6 Right 42 Secondary auditory 
-25 9 Left 42 Secondary auditory 
-4 2 Left 22 Superior temporal 

Playing and listening to scales minus listening to scales 
-26 54 Left 4 Primary motor 
-62 -20 Right cerebellum Cerebellum 

-7 57 Left 6 Superior frontal gyrus 

Reading score minus presentation of visual dots 
-95 2 Right 18 Secondary visual 
-92 11 Right 18 Secondary visual 
-95 -3 Left 18 Secondary visual 
-66 38 Left 19 Occipito-pariet.sulcus 

Reading score and listening minus reading score 
-23 9 Left 42 Secondary auditory 
-16 6 Right 42 Secondary auditory 
-9 5 Right 22 Superior temporal 
-33 12 Left 22 Superior temporal 
-38 49 Left 40 Supramarginal gyrus 

playing, and listening minus reading score and listening 
53 Left 4 Primary motor 

.. -17 Right cerebellum Cerebellum 
10 29 Left 44 Inferior frontal gyrus 
6 36 Left 6 Premotor cortex 
6 53 Left 6 Premotor cortex 

-64 56 Left 7 Superior parietal lob. 
-66 57 Right 7 Superior parietal lob. 
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Fig. 1. Cortical activation during sight-reading and piano performance. The images were obtained 
after averaging from ten subjects and subtracting the musical scale-playing condition. The PET foci 
of activation &e superimp&ed over MRI horizontal slices of the subjeck'brains. Slice A is at +29 
on the ventrodorsal axis, and the slices (A to H) are 6 mm apart. Activation in the anterior left 
hemisphere corresponds to the involvement of area 44 (A and 6) and area 6 (C to F), recruited for 
the patterning of the motor sequences required for the right manual execution of the piece. 
Activation in the posterior part of the left hemisphere corresponds to the involvement of area 40 or 
supramarginal gyrus (D and E) and reflects the mapping of visual and auditory representations of 
the melody; symmetrical, but less intense (P < 0.05), activation of the right area 40 is indicated in 
slice E. The foci of activation in the most posterior region of the cortex is located in the left 
occipitoparietal sulcus (C and D) and in the superior parietal lobule (area 7) of both hemispheres 
(E, F, and G); the latter activation can be attributed to the sensorimotor transformation inherent in 
visually guided finger positioning. The activation of the motor area 4 was canceled out by 
subtracting the scale-playing condition, and it is not shown here as it was merging with the other foci 
on slice E. The present technique does not allow inference about the cerebral organization of 
individual subjects. However, the variance was of the same order of magnitude in this study as it 
was in PET studies examining face recognition, object categorization, and letter reading (21), 
suggesting that individual differences were not more pronounced in this musical performance task 
than in tasks calling for more universal capabilities. 

that neither reading nor listening alone had 
produced, and this activation was located 
in the superior and posterior part of the 
supramarginal gyrus (area 40), in the infe- 
rior parietal lobule of both hemispheres. 
The recruitment of these areas only when 
both reading and listening were conjointly 
involved suggests that they perform a map- 
ping between musical notation and its cor- 
responding sounds or melody. The visual- 
to-sound mapping function of the inferior 
parietal lobule is well established in the 
verbal domain, and the destruction of this 
area results in alexia with agraphia (7). 
However, the foci of activation in the 
present musical task were located in the 
superior part of the supramarginal gyms, the 
destruction of which does not afTect reading 
and writing (18). This indicates that the 
mapping of printed musical notation and its 
auditory representation takes place in areas 
distinct from, yet adjacent to, the structures 
underlying the mapping of visual and audi- 
tory representations of words. 

Two additional areas that were not im- 
plicated by playing, reading, or listening 
alone were recruited when the subjects 
performed the main experimental task that 
required the conjunction of these three 
components. One involved the superior 
parietal lobule (area 7) of both hemispheres 

and may reflect the generation of spatial 
information derived from the location of 
the notes on the staiT for the actual motor 
performance required in the manual execu- 
tion of the musical piece. Consistent with 
this suggestion is evidence (16, 19) that 
this area of the parietal cortex is strategi- 
cally placed to mediate the sensorimotor 
transformations for visually guided skilled 
actions and finger positioning. The other 
area of activation specific to the main ex- 
perimental task involved the left premotor 
cortex (area 6) and the left inferior frontal 
gyrus (area 44), immediately above Broca's 
area, which plays a critical role in organiz- 
ing the motor sequencing underlying 
speech production; the activation of the 
dorsal region of area 44 in the present task 
may thus reflect a similar role in the orga- 
nization of the motor sequences inherent in 
keyboard performance. 

Our results suggest that sight-reading 
and piano performance entail processing 
demands that are realized by a cerebral 
network distributed over the four cortical 
lobes and the cerebellum. This network 
parallels the neural substrates of verbal pro- 
cessing but is distinct from it, and the 
spatial nature of musical notation requires 
for its reading the participation of the su- 
perior parietal lobe, which is not normally 

involved in verbal performance. The cere- 
bral areas used during the execution of 
these musical skills are therefore relatively 
functionallv indewndent from the areas 
used for verbal tasks, which explains why 
some aphasic musicians can pursue their 
musical activities with little disruption (6). 
Nonetheless, the proximity of the critical 
cerebral structures underlying both verbal 
and musical performance makes a conjoint 
disruption of both domains a likely occur- 
rence when brain damage is either exten- 
sive or d&se (20). The omnization of the . , - 
neural substrates of musical performance is 
thus a function of the specific processing 
demands of these skills, consistent both 
with a distributed representation made nec- 
essary by the multiplicity of operations re- 
quired for musical performance and with a 
modular representation reflecting the pro- 
cessing competences of the cerebral struc- 
tures involved. However, sight-reading and 
playing are only a fraction of musical expe- 
rience, and we are still far from understand- 
ing the pleasure and emotions elicited by 
music, as well as the composer's mind. 
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