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Chance and Statistical Significance in Protein and 
DNA Sequence Analysis 
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Statistical approaches help in the determination of significant configurations in protein and 
nucleic acid sequence data. Three recent statistical methods are discussed: (i) score- 
based sequence analysis that provides a means for characterizing anomalies in local 
sequence text and for evaluating sequence comparisons; (ii) quantile distributions of amino 
acid usage that reveal general compositional biases in proteins and evolutionary relations; 
and (iii) r-scan statistics that can be applied to the analysis of spacings of sequence 
markers. 

T h e  rapid accumulation of molecular se- significance are not necessarily synony- 
quence data has led to an increasing need mous. The use of only gross averages elim- 
for fast and versatile computer algorithms 
and statistical methods for discerning signif- 
icant patterns and relations within and 
among sequences. The ability to distinguish 
what is likely to occur from what is unlikely 
to occur by chance is important in this 
context and may help in identifying se- 
quence features for further experimental 
studies. For example, consider the distribu- 
tion of charged residues in a protein se- 
auence. A random distribution does not 
entail nearly even spacings of charged resi- 
dues but usually shows local fluctuations in 
charge density. How does one discern sig- 
nificant charge clusters (basic, acidic, or 
mixed) or significant gaps in the charge 
distribution? When is a run of charged or 
uncharged residues (allowing for a few er- 
rors) significantly long, and similarly when 
is a periodic charge pattern like (+, O), or 
(-, 0, O), significantly long? Here + = {K, 
R) [one-letter code (I)], - = {D, E), and 0 
= {all other amino acids). 

Statistical variation is often recondite. 
and impressions and intuition can be mis- 
leading. For example, the yeast transcrip- 
tional activator GCN4 (length N = 281 
residues) (2) has a total of 36 basic residues 
(frequency f+ = 12.8%) and 46 acidic 
residues (frequency f- = 16.4%). The 
COOH-terminal DNA-binding domain of 
GCN4 contains 15 basic and 7 acidic resi- 
dues over a length of 46 residues: does this 

inates sensitivity to variance and is bound 
to ignore important parameters of the un- 
derlying process. Coupled with the intu- 
ition and insights of the experimenter, 
well-founded statistical analyses are likely 
to aid in the interpretation of data that bear 
on the understanding of molecular mecha- 
nisms and evolution. Statistical methods 
can, at their best, extend the potential of a 
given level of study as well as indicate its 
limits. Pro~er  statistical ~rocedures raise 
new questions and suggest new relations. 
Experiment remains paramount in estab- 
lishing an hypothesis. 

This article discusses three recent sta- 
tistical methods that may assist in the 
appraisal of nucleic acid and protein se- 
quence properties (4): (i) score-based se- 
quence analysis; (ii) quantile distributions 
and correlation analysis of amino acid 
usage; and (iii) genomic heterogeneity 
assessments by r-scan statistics. The first 
method is a flexible and sensitive way to 
characterize anomalies in local seauence 
composition. The second method is ap- 
propriate for assessing global composition- 
al biases in proteins relative to a given 
reference set of sequences. The third 
method entails analysis of counts and 
spacings of specific oligonucleotides (such 
as restriction sites) in genomic sequences. 
We start with a concise descriptive over- 
view of all three methods. and then con- 

indicate a statiGically significant' degree of tinue with elaborations, applications, and 
clustering of charged residues? The answer possible interpretations of results. Other 
turns out to be borderline (3), but as we statistical and computer methods for bio- 
show below, this region is distinguished by molecular sequence analysis not discussed 
a statistical test specific for the prediction of here include methods for sequence simi- 
DNA-binding domains. larity comparisons, analysis of codon bias, 

Statistical significance and biological determination of consensus sequences, 
motifs, and profiles, phylogenetic recon- 
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94305 annotations are given in (5). 

Descriptive Overview 

Score-based sequence analysis. Interesting se- 
quence segments and arrangements can be 
identified by assigning appropriate scores to 
the individual residues or to sets of residues 
of one or several seauences. We discuss the 
theory in two contexts: (i) analysis of a 
single protein sequence seeking to identify 
sequence features that correspond to seg- 
ments of significantly high cumulative 
score; and (ii) analysis of multiple se- 
quences seeking to determine evolutionary 
histories and identifv common sements - 
having high total similarity score. In these 
analyses the segment length is variable. 
The distribution of the maximal segment 
score for randomly generated single or mul- 
tiple protein sequences is available under 
broad conditions (6, 7). Such results may 
serve as benchmarks of statistical signifi- 
cance. The results also provide a means for 
choosing suitable scoring schemes (7). 

Score-based sequence analysis aimed at 
locating high-scoring segments can be used 
to resolve clusters of amino acids with a 
particular characteristic (such as charge or 
hydrophobicity) or of a particular type 
(such as Ser/Thr or Cys). The method can 
be extended by using two or more scoring 
regimes simultaneously, for example, in 
predicting amphipathic a helices. The use 
of generalized scores [such as PAM matrices 
that are based on observed amino acid 
replacements (8, 9) or amino acid classifi- 
cations (al~habets) that correlate with \ .  
physiochemical properties] also provides a 
versatile tool to conduct multiple-sequence 
similarity comparisons and phylogenetic re- 
constructions (1 0). 

It is instructive to illustrate some natural 
explicit scoring assignments. We designate 
the alphabet at hand by {a,, a,, . . ., a 3  
and the corresponding letter scores by {s,, 
s2, . . ., s,); for example, for nucleotides, r 
= 4; for codons, r = 61; for amino acids, r 
= 20; and for the charge sign of amino 
acids, r = 3. 

1) Scores emphasizing positive charge. 
For Lys (K) and Arg (R) sets = +2; for Asp 
(D) and Glu (E), s = -2; and for other 
amino acids, s = - 1; His (H) may be 
scored in various ways (7). Alternatively, 
we might take for scores the pK value of an 
amino acid minus 7. In seeking negative 
charge clusters, interchange the scores as- 
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signed to {K, R) and {D, E) above. 
2) Scores associated with a run of a 

letter a. Here the score of letter a is set to 
+1 and the score of all other letters to a 
sufficiently large negative number. Obvi- 
ously, only a run of letter a can have 
positive score. 

3)  Scores for hydrophobic profiles. In 
this case one may use the Kyte-Doolittle 
scale or any of the many other scales that 
have been proposed for measuring hydro- 
phobicity (1 1). 

4) Scores derived from target frequen- 
cies. In a class of sequences, suppose the 
average letter frequencies are {p,, - . ., pT}. 
Let {q,, q2, . . ., qr} be a set of target 
frequencies, which correspond to the com- 
position in representative segments of the 
type we wish to identify. In many contexts 
the scores si = ln(qi/pi), i = 1, 2, . . ., r 
(log-likelihood ratios), are appropriate. Be- 
low we exemplify the concept of target 
frequencies with scoring methods for the 
detection of transmembrane segments and 
DNA-binding domains in proteins. 

Quantile distributions and correlation anal- 
yses of amino acid usage. Detailed knowledge 
of amino acid usage (the global composi- 
tional spectrum) within and between pro- 
tein sets can provide aids in appraising a 
particular sequence. For example, if a cer- 
tain protein is reported to be rich (or poor) 
in a given amino acid type, one would like 
to know how unusual this circumstance is 
among a broad collection of proteins from a 
similar source. For this purpose, we have 
introduced the application of quantile dis- 
tributions of amino acid usage, a method 
that encompasses a much finer description 
than mere average and standard deviation 
estimates (1 2). Explicitly, the quantile 
Q(x) of a residue type for a given set of 
proteins is the fraction of proteins for which 
that residue type occurs with frequency less 
than the percentage x. Quantile distribu- 
tions may be calculated for different amino 
acid alphabets (for example, hydrophobic, 
charge, and codon groupings) and pertain 
to the following biological and evolutionary 
issues. What is the nature of amino acid 
usage per protein in relation to its function, 
time of expression, cellular and tissue local- 
ization, evolutionary history, or other bio- 
logical criteria? How does usage of amino 
acids with particular biochemical or steric 
attributes correlate? For example, how do 
the quantile distributions compare between 
Lys and Arg, both positively charged, be- 
tween Asp and Glu, both negatively 
charged, among major hydrophobic amino 
acids (L, V, I, F, and M), or between the 
small amino acids. Glv and Ala? , , 

A preview of some results may be useful. 
Thus, among the acidic residues Glu usage 
is stochastically larger than Asp usage for all 
species examined; that is, for any specified 

frequency of usage there are more proteins 
that use Glu at or above the s~ecified 
frequency than there are proteins that use 
Asp at or above that frequency. Charge 
compensation is apparently a universal 
property in that cationic and anionic resi- 
due frequencies display significant positive 
correlation (generally, with a correlation 
coefficient greater than 0.4) for protein 
sequences of species as diverse as Escherichia 
coli and human. Other ~ers~ect ives  on . . 
compositional biases may relate to the com- 
plexity of the biosynthetic pathways for the 
different amino acids, to relative amino 
acid abundances, to tRNA availabilities, to 
aminoacyl synthetase fidelity, and to possi- 
ble founder effects. 

Compositional heterogeneity within and be- 
tween genumes. In the study of genomic 
organization, the general problem arises of 
how to characterize anomalies in the spac- 
ings of a specified marker (for example, 
restriction sites, purine or pyrimidine tracts 
of certain lengths, and nucleosomes) . Simi- 
lar questions concern the spacings of partic- 
ular residues (such as Cys) in protein se- 
auences. How does one assess excessive clus- 
tering (too many neighboring short spac- 
ings), overdispersion (long gaps between 
markers), or too much regularity (too few 
short spacings or too few long gaps or both) ? 

For example, a group of eight DNA 
adenine methylation (DAM) sites, corre- 
sponding to the tetranucleotide GATC, 
was observed in a 245-bp stretch that in- 
cluded the E. coli origin of replication (1 3). 
If we assume that available DAM sites are 
distributed at random with a certain fre- 
quency around the E. coli genome, what is 
the probability of observing such a cluster 
somewhere in the E. coli genome? A statis- 
tical method based on r-scans (sums of r 
consecutive distances between markers) 
was introduced in (1 4) for discerning non- 
randomness in the distribution of the spec- 
ified markers in sequence data. The tech- 
nique is particularly adapted to varying the 
scale at which inhomogeneities can be de- 
tected, from nearest neighbor to more dis- 
tant interactions. 

Score-Based Sequence Analysis 

In this section we describe probabilistic for- 
mulas for characterizing significant configu- 
rations in random letter sequences with ref- 
erence to specific assignments of letter 
scores. Of particular interest is the identifi- 
cation and evaluation of the segment of the 
sequence with maximal additive score, or 
more generally, of several top-scoring seg- 
ments. A second set of results deals with the 
letter composition of high-scoring segments, 
which in certain contexts provides a method 
for choosing an appropriate scoring regime. 

We designate the alphabet in use by A 

= {a,, a,, . . ., a,) and the corresponding 
scores by S = {s,, s2, . . ., sJ. Let X,, X2, 
. . , XN be the successive letter scores in a 
sequence of length N. In the simplest mod- 
el, the Xi are independently identically 
distributed with probability distribution 
Prob(X = s,} = p,, which may be interpret- 
ed to mean that sampling letter ak (with 
probability pk) yields a score sk. The results 
we describe have generalizations to a model 
in which successive letters have a Markov 
dependence (1 5, 16). Two essential restric- 
tions are imposed on the set of scores: there 
has to be at least one positive score, and the 
mean score per letter, p, = Xpisi, has to be 
negative. If 1.1, > 0, the maximal segment 
would almost always be the whole se- 
quence, and this is not of interest. In many 
situations the assumption p, < 0 is intrinsic. 
Thus, for scores that are derived from a set 
of "target frequencies" {qi} with score values 
given by si = ln(q,7pi), whenever the fre- 
quencies {qi) are not identical to the {pi), 
then necessarily = Epi ln(qi/pi) < 0. 

Statistical theorv. Probabilitv measures 
are available to characterize skgments of 
high aggregate score and the distribution of 
the number of separate segments of high 
score. Let {S,): be the partial sum process 
of segment scores, that is, So = 0, S, = 
X;, Xi, m = 1, 2, . . ., N. The quantity 
M(N) = maxosk,l,hi (SL - Sk) corresponds 
to the segment of the sequence with maxi- 
mal aggregate score. For each value of x, 
the maximal aggregate score M (N) satisfies 

(1 7). Here A* (18, 19) is the unique 
positive solution to the equation 

and K* is a parameter that is given by an 
explicit series expression that can be readily 
evaluated numerically (20). Computer rou- 
tines that calculate A* and K* are available 
(7, 10, 21). 

The asymptotic formula 1 indicates that 
M(N) grows as (In N)lA*. In practice, we 
use this result on random sequences of 
similar overall composition to a given pro- 
tein sequence to establish benchmarks of 
statistical significance for various distinc- 
tive segment features like hydrophobicity, 
charge, DNA binding, transactivation, and 
secondary structure (see below). To this 
end we set the left-hand side of Eq. 1 equal 
to some predetermined significance level, 
for example, P = 0.01 or P = 0.05, and 
solve for x = x(P); a maximal segment score 
exceeding M, = (In N)lA* + x(P) is 
significant at the P level. 
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Fig. 1. Identification of high- 
scoring hydrophobic (thick 80.0 
line) and transmembrane 
(thin line) segments in the hu- 
man p,-adrenergic receptor 
(23). Scoring assignments 
were as described in text. 
The dotted line indicates the 
significance threshold at the 40.0 
5% level for the hydropathy 
scores calculated according 
to Eq. 1. A significant high- 
scoring segment extends 20.0 
from residue 31 to the peak at 
residue 96 and corresponds 
to the first two transmem- 0.0 
brane domains (23). The 0th- 0 ,  100 200 300 400 
er peaks correspond to the Human p,-adrenergic receptor 

remaining transmembrane 
domains. 

In many situations there may be natural 
criteria underlying score assignments. For 
example, the experimentally derived Kyte- 
Doolittle scale for measuring hydropathy 
strength mentioned above is of this kind. In 
other situations, however, one is confront- 
ed with the problem of choosing appropri- 
ate individual letter scores. A second the- 
oretical result concerning the composition 
of high-scoring segments bears directly on 
this question. It has been proved (22) that 
in random sequences (successive letters in- 
dependently identically distributed) high- 
scoring segments have an intrinsic biased 
composition such that letter type a, does 
not occur with the sampling frequency pi 
but rather with frequency 

Turning this expression around, it follows 
that scores defined by 

identify high-scoring segments of target fre- 
quencies {q,). The location and significance 
of high-scoring segments remains un- 
changed upon scaling the scores isi} by any 
positive factor. Thus, the result in Eq. 4 
can be interpreted as follows. Let {pi) be the 
frequencies of letters in some reference 
random sequence, and let {qi) be the desir- 
able target frequencies, which are derived 
from known representatives of the type of 
region we seek to identify. Then the score 
for letter a, should be set proportional to the 
corresponding log-likelihood ratio ln(qi/pi). 
It might be emphasized that for any seg- 
ment covering residues k to 1 (1 > k) where 
Sl - Sk is large and positive, the letter 
frequencies in this segment are biased to- 
ward the values i = 1, . . ., r, as 
occurs with the segment of maximal score. - 
Conversely, if the letters in a segment are 
distributed according to Eq. 3 then, with 
high probability, the aggregate score of this 
segment would be very large. Examples are 

discussed below. 
The statistical analysis underlying our 

discussion involves the notion of an excur- 
sion plot. We illustrate this with a hydrop- 
athy plot of the human p2-adrenergic recep- 
tor (BZAR) (23), a prototype of G protein- 
coupled receptors. As scores we use a digi- 
tized scale corresponding to the hydropathy 
index of Kyte and Doolittle (1 1) rounded to 
the closest integer minus 1: 3 (I, V, and L); 
2 (F); 1 (C, M, and A); -1 (G); -2 (T, S, 
W, and Y); -3 (P); -4 (H, E, Q, D, and 
N); and -5 (K and R). Beginning at the 
NH2-terminus of the protein, we succes- 
sively cumulate the scores as determined by 
the seauence. Because we are concerned 
only with high-scoring (positive) segments, 
we recursively define the excursion scores E, 
according to 

Eo = 0, Ei = ma~{E,-~ + si, 0), i 2 1 (5) 

The excursion plot E, versus i for BZAR is 
shown in Fig. 1. The value of each excur- 
sion is defined to be the peak score [com- 
pare with (1 7)]. If the peak score exceeds 
the critical values Mo.,, or M,.,,, then the 
segment from the beginning of the excur- 
sion up to the residue where the peak value 
is first realized within the excursion is a 
high-scoring segment, significant at the 5% 
or 1% level as the case may be. The 
statistics indicate one strong hydrophobic 
region in BZAR extending from residue 3 1 
to residue 96 (Fig. 1). This excursion (ex- 
tending to residue 179) consists of four 
distinct segments of predominantly hydro- 
phobic residues, which are commonly as- 
siened to the first four transmembrane do- " 
mains of the receptor. Although these seg- 
ments are identified as distinct ascends in 
the profile (Fig. l ) ,  in this case they do not 
individually score sufficiently highly to be 
distinguished from chance fluctuations. 

Target frequencies: transmembrane do- 
mains. Membrane-spanning domains of pro- 
teins are usually predicted from peaks in 

Table 1. Scores for transmembrane segments. 

Residue q* p t  Log,(q/p) Score* 

1 0.138 0.051 1.444 6 
L 0.205 0.090 1.186 5 
V 0.143 0.068 1.070 4 
A 0.108 0.066 0.699 3 
F 0.067 0.037 0.862 3 
M 0.028 0.019 0.543 2 
G 0.088 0.069 0.357 1 
W 0.018 0.016 0.203 1 
C 0.023 0.026 -0.194 -1 
Y 0.028 0.035 -0.345 -1 
T 0.049 0.067 -0.433 - 2 
S 0.051 0.076 -0.576 - 2 
P 0.019 0.055 -1.537 - 6 
H 0.006 0.023 -2.024 -8 
Q 0.008 0.040 -2.314 - 9 
N 0.008 0.048 -2.611 -10 
R 0.003 0.049 -3.976 -16 
D 0.003 0.052 -4.025 -16 
K 0.003 0.051 -4.031 -16 
E 0.003 0.061 -4.187 -17 

*Frequencies in the aggregate of annotated trans- 
membrane segments in 980 protein entries of SWISS- 
PROT Release 21.0 [(25); proteins with multiple trans- 
membrane segments excluded]. tAverage overall 
frequencies in the same set of proteins. $Values of 
the previous column multiplied by the scale factor 4 
and rounded to the nearest integer. 

hydropathy plots, although more specific 
methods are also available (24). In Fig. 1 
we used the digitized Kyte-Doolittle hy- 
dropathy index to predict the transmem- 
brane segments of BZAR. Equation 4 sug- 
gests a more specific set of scores. To derive 
these scores, we established the frequencies 
qi of amino acids in the aggregate of 980 
annotated transmembrane domains assem- 
bled from SWISS-PROT Release 21.0 
(25), the selection being restricted to pro- 
teins with a single transmembrane domain. - 
This restriction was imposed because most 
annotated transmembrane domains are not 
firmly established experimentally. Existing 
prediction algorithms are presumably more 
likely to identify the correct extent of a 
transmembrane region if there is only one 
in the seauence. rather than a succession as 
in BZAR. Appropriate scores are deter- 
mined as ln(q,/p,), where pi are the average 
overall frequencies of amino acids derived 
from the same set of proteins (Table 1). 
Suitably scaled and digitized scores are giv- 
en in column 4 of Table 1. These scores 
generally follow the Kyte-Doolittle scale, 
but charged amino acids score more highly 
negative because of their severe underrep- 
resentation in the sampled transmembrane 
regions. Comparison with experimentally 
established transmembrane regions (when 
more such data become available) is re- 
quired to assess whether the scores given in 
Table 1 yield indeed more accurate predic- 
tions. The excursion plot for BZAR gives a 
curve similar to the one obtained with the 
hydropathy scores, but with peaks much 
more pronounced (Fig. 1). 
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Table 2. Scores for DNA-binding domains. 

Residue q* pt log,(q/p) Score* 

C 0.033 0.015 1.099 4 
R 0.1 18 0.062 0.940 4 
K 0.096 0.057 0.757 3 
W 0.015 0.010 0.677 3 
Y 0.034 0.027 0.316 1 
F 0.037 0.032 0.215 1 
1 0.051 0.044 0.201 1 

N 0.045 0.043 0.063 0 
Q 0.053 0.053 0.024 0 
E 0.067 0.067 0.010 0 
T 0.054 0.054 -0.020 0 
V 0.049 0.053 -0.095 0 
L 0.080 0.091 -0.184 -1 
H 0.022 0.025 -0.200 -1 
A 0.067 0.079 -0.241 -1 
M 0.019 0.024 -0.376 -2 
G 0.047 0.064 -0.454 -2 
S 0.057 0.087 -0.615 -2 
D 0.029 0.050 -0.799 -3 
P 0.027 0.062 -1.223 -5 

*Frequencies in the aggregate of 753 annotated DNA- 
binding domains assembled from SWISS-PROT Re- 
lease 21.0 (25). ?Average overall frequencies in 
the same set of DNA-binding proteins. Walues of 
the previous column multiplied by the scale factor 4 
and rounded to the nearest integer. 

Target frequencies: DNA- binding domains. 
As a second example of how to choose 
scores best suited for the identification of 
specific domains in proteins we consider 
scores for the prediction of DNA-binding 
domains. Several DNA-binding motifs have 
been described, such as helix-turn-helix, 
zinc fingers, homeodomain, basic regions 
juxtaposed with a leucine zipper, and helix- 
loop-helix (HLH); other DNA-binding do- 
mains are known with no apparent similarity 
to the listed structural motifs (26). It may 
seem ambitious to pool all different DNA- 
binding motifs and on top of that ignore all 
positional information (like the spacings be- 
tween cysteines in zinc fingers) and yet hope 
to recover some distinguishing property of 
DNA-binding domains. A common feature 
of DNA-binding domains, however, is their 
primarily basic character. Thus, a composi- 
tional prescreening of a query sequence 
should at least target possible regions for 
further inspection as potential DNA-bind- 
ing domains. Proceeding as in the previous 
example, we determined the frequencies qi 
for the aggregate of 753 DNA-binding do- 
mains assembled from SWISS-PROT fea- 
ture table annotations (25) and derived 
scores according to Eq. 4 (Table 2). The 
scores reflect the relative overrepresenta- 
tion of cysteines (mostly due to the zinc 
finger motifs) and of basic residues, whereas 
the helix-breaking residue proline is rela- 
tivelv underre~resented. 

The partial sum plot for the yeast tran- 
scriptional activator GCN4 (2) is given in 
Fig. 2. The COOH-terminal residues 231 
to 281 form a highly significant high-scor- 

40.0 Fig. 2. Identification of high- 
scoring DNA-binding seg- 
ments in the yeast transcrip- 
tional activator GCN4 (2). 

30.0 Scoring assignments were 
--- as given in Table 2. The 

dotted line indicates the sig- 
nificance threshold at the 

u- 20.0 5% level calculated accord- 
ing to Eq. 1. The high-scor- 
ing COOH-terminal se- 

10.0 quence contains the DNA- 
binding function of GCN4 
(2). 

0.0 
0 100 200 

Yeast transcriptional activator GCN4 

ing segment, and this is indeed the experi- 
mentally determined DNA-binding domain 
[a basic region-leucine zipper structure (2)]. 
The high-scoring segment of GCN4 is de- 
void of cysteines, the high score being due 
mainly to positively charged residues. The 
association of DNA-binding domains with 
statistically significant charge clusters was 
discussed previously (3). Those earlier stud- 
ies used fixed window size screening of 
sequences and binomial models to evaluate 
significance (27). Among 1307 human pro- 
tein entries in SWISS-PROT of lengths at 
least 200 residues there are 76 sequences 
with annotated DNA-binding domains. 
The scoring method identifies 53 of these at 
the 5% significance level and also predicts 
DNA-binding segments in an additional 70 
proteins (including a number of unanno- 
tated known DNA-binding proteins and 
false positives). Thus, the scoring method 
performs quite nicely as a preliminary probe 
for possible DNA-binding activity of a pro- 
tein sequence. 

Scores for hypercharge runs. As men- 
tioned in the introduction, the evaluation 
of runs of a particular letter type is also 
encompassed by the scoring method. The 
choice of scores is determined by the target 
length and purity of the runs. For example, 
to detect very long charge runs one might 
choose scores 1 (KRED) and -4 (all other 
residues). Significant hypercharge runs 
were found to occur in many nuclear au- 
toantigens and are speculated to play a role 
in autoimmunity (28). Significance thresh- 
olds are also available by comparison with 
Markov chain models (29). 

ldentification of amphipathic helices. We 
illustrate the versatility of scoring assign- 
ments with a brief discussion of how the 
method could be used to identify likely 
amphipathic helices in protein sequences. 
To this end we would define subsequences 
of the given protein derived by projecting 
(in all possible phases) the sequence onto 
an a-helical wheel and scoring residues 
separately on either side of the assumed 

helix (that is, residues 1, 4, 5, 8, 12, 15, 
16, 19, 22, and so forth for one side, and 
residues 3, 6, 7, 10, 13, 14, 17, 21, 24, 25, 
and so forth for the-other side). Thus, for 
each phase, both subsequences defined as 
described are screened with two scoring 
schemes, one emphasizing hydrophobicity 
and the other emphasizing hydrophilicity. 
The scoring schemes used could be the 
digitized Kyte-Doolittle hydropathy values 
for the hydrophobic side, and the negative 
of these values for the hvdrovhilic side. 

1 L 

Alternatively, scores could be derived from 
target frequencies assembled from crystallo- 
graphically established amphipathic heli- 
ces. The latter approach would have the 
advantage of including helix-forming pro- 
pensity biases among the residues. TWO 

high-scoring segments, one indicating a 
strongly hydrophobic stretch and the other 
a strongly hydrophilic stretch, that overlap 
with respect to the original sequence would 
locate a region of amphipathic character. 

Applications to sequence comparisons. The 
method of score-based sequence analysis 
has also been applied to the problem of 
establishing statistical significance for se- 
quence comparisons (7, 10). Let two inde- 
pendent random sequences of lengths N 
and N' consist of letter types a, drawn with 
probabilities { p l ,  p2,  . . . , pr} and @' ,, p',, 
. . ., p',}, respectively. For a given align- 
ment and position, letter type ai in se- 
quence 1 would be paired with letter type a, 
in sequence 2, with an associated score si,. 
Under certain restrictions, Eq. 1 holds with 
N replaced by N N ' ,  A* replaced by the 
unique positive root of the equation 
Er. I,,= 1 pip',ehy = 1, and K* computed by an 
accessible formula (7). The choice of scores 
is generally germane to an evolutionary 
model of protein relatedness, high scores 
given to identities of rare amino acids and 
negative scores associated with residues of 
least substitutability. Most commonly used 
is the protein comparison matrix of Dayhoff 
et al. (8). Arguments similar to those justi- 
fying scores as in Eq. 4 can be given in favor 
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of the Davhoff scores over other assian- - 
ments (9). Computer programs to screen a 
query sequence rapidly against a database 
for significant high-scoring segments are 
currently in wide use (1 0). 

Quantile Distributions of 
Amino Acid Usage 

The residue usage of specific protein sets has 
been the subject of a number of compara- 
tive studies (30). All of these comparative 
studies have centered on average residue 
usages for different protein collections. Our 
methods are founded on auantile distribu- 
tions, stochastic ordering relations, and 
correlation analysis applied to different ami- 
no acid classifications. 

Quantile distributions. For each residue 
type and protein class %, let the quantity y 
= Q(x) be the fraction of proteins in % that 
carry the residue type at a frequency at most 
x. Thus, x, yielding y = 112 indicates the 
median usage value among the proteins of 
%, and the interquartile range [ x ~ . ~ ~ ,  XO.~,] 
is defined by the usage frequency points of 
Q(x0,,,) = 0.25 and Q(xO,~~) = 0.75. A 
quantile distribution Q(.) is said to be 
stochastically larger than the quantile dis- 
tribution Q(.) if a (x)  < Q(x) for all x. This 
relation implies that the mean usage corre- 
sponding to the quantile distribution a(x)  
exceeds the mean usage corresponding to 
the quantile distribution Q(x) and, more 
aenerallv. each monotone transformation - , , 
on levels of usage is similarly ranked (see, 
for exam~le. Fia. 3). 

~ o r r e L t i A  if residue usage. A standard 
measure of concordance is the cross (Pear- 
son) correlation coefficient which, howev- 
er, can be readily confounded by outlier 
observations or data set biases or both 
effects. The Kendall Tau correlation coeffi- 
cient is less affected in this way. Accord- 
ingly, for each residue type pair (X, Y) we 
ascertain the frequencies pi(X) and p,(Y) of 
these residue types in the ith protein se- 
quence of %. For each pair of sequences, 
indexed i and j, we determine 

+ 1 if bXX) - p,(X)l bi(Y) - P,(Y)I > 0 
- 1 if [hi(X) - Pj(X)I [PLY) - pj(Y)I < 0 

0 if either pi(X) = pj(X) or pi(Y) = pj(Y) 
(6) 

The Kendall Tau association measure is 

where n is the number of sequences in %, 
and t and s are the numbers of ties among 
pairs of bi(X)) and bi(Y)), respectively. 
Clearly -1 I T I 1, and7 = 1 or -1 ifand 
only if the values of bi(X)) and bi(Y)} 
exhibit a completely concordant or discor- 
dant ordering, respectively. A value I T /  2 

Fig. 3. Quantile distributions 
for acidic residues in human 
and E. coli proteins. Protein 
sets were as described in 
the legend to Table 1. Glu- 
tamate (E) is stochastically 
larger than aspartate (D) in 
both human and E. coli, and 
also in all other species ex- 
amined. Graphically, this 
means that the glutamate 
quantile curves lie entirely to 
the right of the correspond- 
ing curves for aspartate. 

- D Human - E: Human -- 
-4 

D, E. coli 
E, E. coli 

10.0 
Amino acid usage (%) 

0.25 for two independent random orderings 
(with n r 250) has a probability <0.01 of 
occurring (31). An adjusted value of T can 
be used to account for the constraint that 
the frequencies add to 1 (12). 

Amino acids of most and least frequent 
usage for various species. The most frequent- 
lv used amino acid (in terms of mean and 
kedian values) in almost all species is Leu, 
although in E. coli Ala is a virtual tie. The 
least frequently used amino acid is, on 
average, Trp in the eukaryotic species and 
in the viruses, whereas Cys is the least 
frequent residue in the prokaryotes E. coli 
and Bacillus subtilis. Cysteine, on average, is 
used at most 1% in the unicellular species 
E. coli, B,  subtilis, and yeast compared to 
more than 2% in the higher eukaryotes. 
Cysteine usage entails quantile distributions 
that markedly deviate between human and 
E. coli. Nearlv 10% of the E. coli  rotei ins 
compared to ;bout 5% of the human pro- 
teins are devoid of Cys residues (including 
many ribosomal proteins and regulatory 
proteins functioning in mRNA processing). 
At the high extreme, E. coli lacks cysteine- 
rich proteins (99% quantile = 3.8%), 
whereas the human collection carries many 
such proteins (99% quantile = 7.4%). The 
dearth of cvsteine-rich ~roteins in E. coli 
presumably reflects the near absence of 
extracellular ~roteins. whereas the human 
collection involves many cysteine-rich se- 
creted proteins, such as blood-clotting fac- 
tors and proteins of the complement series, 
as well as an assortment of glycoproteins 
bearing a variety of disulfide-bonding pat- 
terns, such as epidermal growth factor-like 
domains and cysteine kringles (32). 

Usage of charged amino acids. Table 3 
displays the quantile points for the levels y 
= 0, 0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 
0.90, 0.95, 0.99, and 1 of charge attributes 
relative to the class of all available proteins 
(25) of the human, Drosophikz mekznogaster, 
Saccharomyces cerevisiae, E. coli, and B. 
subtilis species and for all open reading 
frames (ORFs) of the major human herpes 

viruses [herpes simplex virus type 1 
(HSVl), varicella-zoster virus (VZV), cy- 
tomegalovirus (CMV) , and Epstein-Barr vi- 
rus (EBV)]. The usage of charged residues 
over protein sets displays many intriguing 
features. The 10 to 90% quantile points of 
negatively (D+E) and positively (K+R) 
charged amino acids are both fairly well 
conserved across species. Although the ag- 
gregate average protein positive charge 
(KfR) content is approximately constant 
across species (- 1 1.5%), K versus R usage 
varies significantly. In E. coli, the median 
frequencies of the basic amino acids are not 
strongly disparate (K 4.6% and R 5.7%) 
despite the difference in size of their codon 
complements (2 versus 6). In the human 
set, R is less frequent (median usage 5.3%) 
compared to the E. coli set. Concomitantly, 
K is a relatively abundant residue among 
human proteins (median usage 5.8%). The 
difference may in part result from CpG 
suppression that constrains codon usage in 
vertebrates but not in prokaryotes (33) and 
may also be affected by genomic composi- 
tional biases [human genomic DNA being 
A+T-rich, -60%, whereas the E. coli ge- 
nome is balanced. -50% A + T  (34)l. For ~ ,. 
the four major human herpes viruses K is 
broadlv underused com~ared to human host 
proteins (that is, many herpes proteins use 
K at a frequency below the human 5% 
quantile point) and R is broadly overused 
(many herpes proteins use R at a frequency 
above the human 95% quantile point). The 
median and mean use of acidic residues 
(D+E) is nearly invariant across species, 
-1 1.8%, composed from E, on average 
6.4%, and D, on average, 5.4%. 

The central range (corresponding to the 
0.10 to 0.90 quantile levels) of the quantile 
distributions of total charge are largely con- 
cordant in all species examined. The ex- 
treme range (corresponding to the 0.01 to 
0.99 quantile levels) shows much greater 
difference between species (apparently not 
simply due to variation in sample size): 
human, 29.1% (xo.99 - x,.,,; sample size 
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751 proteins); Drosophila, 33.2% (227 pro- 
teins); yeast, 24.1% (431 proteins); E. coli, 
22.1% (710 proteins); and B. subtilis, 
25.4% (135 proteins). Note the similar 
range values for the unicellular species com- 
pared to the larger values for the higher 
eukaryotes. It is intriguing that total charge 
is reduced by more than 2% on average for 
all major human herpes virus ORFs relative 
to the human protein set. Across all pro- 
and eukaryotic species studied, including 
the protein sets of Table 3 as well as 
chicken, Xenopus, Caenorhabditis elegans, 
maize, Arabdopsis thaliana, and Neurospora 

crassa, the median and mean net charge 
among proteins is slightly negative (about 
-0.5%). In contrast, the human herpes 
virus ORFs consistently carry a slightly 
positive average net charge, about +0.3%. 

A manifest positive correlation underlies 
positive and negative charge content of a 
general protein (Table 4). In all species 
glutamate (E) and aspartate (D) usage are 
significantly positively correlated (Table 5), 
that is, proteins with more E tend to have 
more D, and vice versa. In contrast to the 
acidic residues, the usage of K versus R 
tends to be uncorrelated or slightly nega- 

Table 3. Quantile distributions of charge types in different species and viral protein sets. For 
example, 75% of human proteins have a frequency of positively charged amino acids that does not 
exceed 12.5%; Min, minimum, and Max, maximum. Protein sets were compiled from SWISS-PROT 
Release 17 (25). The Drosophila and yeast sets contain proteins from Drosophila melanogasterand 
Saccharomyces cerevisiaeonly. Highly similar sequences were culled for redundancies (59). Also, 
sequence biases based on structural or functional properties were reduced by selecting only a few 
representatives from multigene families (such as globins and collagens). The complete genomic 
viral sets correspond to the lists of known and putative ORFs as proposed by McGeoch et al. (60) 
for herpes simplex virus (HSVI), Davison and Scott (61) for varicella-zoster virus ( V N ) ,  Chee et al. 
(62) for cytomegalovirus (CMV), and Baer et a/. (63) for the Epstein-Barr virus (EBV). Protein set 
sizes: human (751), Drosophila (227), yeast (431), E. coli (71 O), B. subtilis (1 35), HSVl (69), V N  
(64), CMV (1 15), and EBV (72). From all sets, sequences shorter than 200 residues were excluded 
in order to reduce statistical fluctuations. 

Quantile distribution 
Organism 

Min 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99 Max Mean 

Positively charged amino acids (K+ R) 
Human 3.9 5.4 7.3 8.1 9.3 10.8 12.5 14.3 15.7 23.0 30.2 11.1 
Dros. 4.3 4.8 6.9 7.6 9.2 10.6 12.9 14.5 15.8 24.2 27.0 11.1 
Yeast 3.1 5.1 7.6 8.7 10.1 11.7 13.5 14.9 15.9 19.3 23.4 11.8 
E, coli 3.0 5.0 6.1 7.4 9.0 10.4 11.8 13.1 13.8 16.2 20.5 10.4 
B. sub. 4.9 5.0 6.9 7.9 9.8 11.3 13.5 15.0 16.0 17.4 18.7 11.5 
CMV 4.2 5.4 5.8 7.2 9.2 10.8 12.2 14.4 16.5 18.4 19.4 10.7 
EBV 2.6 2.6 5.1 6.7 8.3 9.6 11.1 12.2 13.6 14.9 14.9 9.7 
HSV 6.9 6.9 8.0 8.1 8.9 9.9 11.5 12.7 14.0 17.3 17.3 10.3 
V N  7.0 7.0 7.2 7.7 8.7 9.8 11.2 12.3 14.3 16.6 16.6 10.1 

Negatively charged amino acids (D+ E) 
Human 0.4 4.9 6.8 8.0 9.6 11.4 13.2 15.2 17.7 22.9 26.2 11.6 
Dros. 2.0 4.7 5.8 7.1 9.2 11.0 12.8 15.2 17.7 20.2 34.9 11.2 
Yeast 3.5 5.4 7.7 9.1 10.8 12.4 14.2 16.1 17.5 21.6 27.5 12.6 
E. coli 2.0 3.5 5.1 6.7 10.0 11.9 13.3 14.6 15.4 17.3 20.3 11.4 
B, sub. 2.8 3.1 4.1 8.5 12.1 14.0 15.4 16.8 17.8 18.5 21.3 13.2 
CMV 2.7 3.1 4.1 5.3 7.1 9.8 11.4 13.1 15.0 18.5 18.8 9.5 
EBV 3.1 3.1 4.4 5.5 7.6 9.6 11.1 12.8 13.3 17.3 17.3 9.4 
HSV 4.0 4.0 6.3 7.2 8.7 10.1 11.1 12.3 13.7 15.1 15.1 9.9 
V N  3.1 3.1 5.5 7.4 8.6 10.0 11.3 12.4 13.4 18.6 18.6 9.9 

Total charge (K+R+ E+ D) 
Human 6.3 11.2 15.3 17.1 19.4 22.1 25.3 29.2 32.1 40.3 50.0 22.7 
Dros. 7.0 11.0 13.1 15.3 18.6 21.9 25.7 29.3 32.2 44.2 56.6 22.4 
Yeast 7.3 12.6 16.5 18.6 21.8 24.3 26.9 29.9 32.4 36.7 42.9 24.4 
E. coli 7.1 9.0 11.5 14.7 19.6 22.4 24.9 26.7 28.2 31.1 33.3 21.8 
B. sub. 9.4 9.4 11.2 15.7 22.9 25.4 28.5 30.6 32.8 34.8 35.8 24.7 
CMV 9.6 9.9 11.7 13.5 17.1 20.8 23.4 26.2 27.3 30.1 30.9 20.2 
EBV 9.0 9.0 11.5 13.0 17.3 19.5 21.3 23.3 24.5 28.3 28.3 19.1 
HSV 12.9 12.9 14.7 16.4 18.2 19.9 22.5 23.9 25.6 29.5 29.5 20.2 
V N  10.7 10.7 13.2 15.4 17.8 20.1 22.2 24.5 26.4 30.4 30.4 20.0 

Net charge (K+R-D-E) 
Human -14.6 -8.8 -5.1 -3.7 -2.2 -0.7 1.0 2.9 4.9 7.9 26.6 -0.5 
Dros. -13.2 -8.4 -5.1 -3.6 -1.9 -0.3 1.3 3.2 4.8 12.3 22.3 -0.1 
Yeast -15.3 -10.6 -6.0 -4.3 -2.3 -0.7 0.9 2.6 3.8 7.0 10.3 -0.8 
E.coli -10.1 -7.1 -4.2 -3.7 -2.6 -1.5 0.4 2.1 3.1 7.6 12.1 -1.0 
B. sub. -7.5 -6.7 -5.8 -4.9 -3.7 -2.4 0.2 2.8 3.6 4.7 5.7 -1.7 
CMV -7.1 -6.7 -3.1 -2.0 -1.2 0.6 3.0 5.2 10.4 13.3 13.8 1.2 
EBV -10.6 -10.6 -5.0 -3.7 -1.7 0.0 2.2 3.6 6.3 9.7 9.7 0.3 
HSV -5.2 -5.2 -2.8 -2.0 -1.2 0.2 1.7 3.5 4.9 9.6 9.6 0.4 
V N  -9.9 -9.9 -4.8 -2.2 -1.0 0.3 1.5 2.8 4.2 8.6 8.6 0.2 

tively correlated, with the median frequen- 
cy of positive charge approximately con- 
stant for all species (about 11.5%). Inter- 
estingly, in all species E is stochastically 
larger than D (Fig. 3). No stochastic order- 
ing occurs between basic (K+R) and acidic 
(D+E) usage (see Fig. 4 for human pro- 
teins). 

Stochastic ordering of amino acid usage. For 
each amino acid type we compare the quan- 
tile distributions of the human versus the E. 
coli protein set, which are of about equal 
sample size (751 and 7 10 protein sequences, 
respectively) with representation of many 
different protein classes. The following sto- 
chastic orderings prevail: (i) E. coli is sto- 
chastically larger than human for the amino 
acid quantile distributions of L, I, V, A, M, 
R, and (R+K), emphasizing the major hy- 
drophobic~ (except for the aromatic F); (ii) 
human is stochastically larger than E. coli 
for the amino acid quantile distributions of 
C, P, S, and E; and (iii) no definite sto- 
chastic ordering between human and E. coli 
is seen for the amino acid quantile distribu- 
tions of G, F, Y, K, T, Q, N, D, W, H, and 
E+D. This large number of stochastic or- 
dering~ is surprising in view of the long 
divergence time between E. coli and hu- 
man. 

Correlation analysis of amino acid usage. 
Tables 4 and 5 reveal three major tenden- 
cies: (i) the property of charge compensa- 
tion is reflected in the high correlation of 
basic versus acidic residue numbers per pro- 
tein, which is consistent with the approxi- 
mate neutrality of proteins; (ii) positive 
correlations exist between functionallv and 
structurally similar amino acids, including 
most pairs of hydrophobic amino acids and 
pairs of aromatic amino acids (primarily 
those having high values in the Dayhoff 
substitutability matrix); and (iii) the high 
negative correlation of strong codon group 
amino acids (A, G, and P; translated ex- 
clusively from SSN codons, where S stands 
for the strongly bonding bases cytosine and 
guanine, and N stands for any base) versus 
the weak codon group amino acids (F, I, K, 
M, N, and Y, translated exclusively from 
WWN codons, where W stands for the 
weakly bonding bases adenine and thymi- 
dine). How can one explain the large neg- 
ative correlation of strong versus weak 
codon group amino acids? Possibly this 
condition reflects on strongly hydrogen- 
bonding base pair regions alternating with 
weakly hydrogen-bonding base pair regions 
of the genome, where compartments of 
high G + C  content c a w  relativelv more 
u 

strong and relatively fewer weak codon type 
amino acids, and vice versa in high A + T  
compartments. Genomic inhomogeneity 
consisting of strong and weak patches of 
200 to 1000 kb in length (isochores) is well 
established in vertebrate species (and prob- 
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ably extant in all eukaryotes) (35). In 
contrast, E. coli has no discernable isochore 
structure with a nearly balanced composi- 
tion [-50% G+C;  (36)] and, consistently, 
its proteins show only a small negative 
correlation of strong versus weak codon 
group amino acid usage (see Table 4). 

Assessment of Genomic 
Heterogeneity and the 
Statistics of r-Scans 

Genomic heterogeneity is widely recog- 
nized. For example, mammalian coding re- 
gions tend to be G+C-rich, as opposed to 
yeast coding regions, which are A+T-rich 
(37). Other forms of heterogeneity include 
CpG suppression prominent in vertebrate 
genomes (33), HTFII islands (38), the 
widespread underrepresentation of the di- 
nucleotide TA in nuclear DNA (39), dis- 
persed Alu sequences and satellite centro- 
meric tandem repetitive DNA (40), and 
characteristic telomeric sequences (41). 
Thus, genomic heterogeneity occurs broad- 
lv and on different scales. 

Questions about spacings of a marker 
array and general issues of sequence het- 
erogeneity led us to a statistical consider- 
ation of the cumulative lengths of r con- 
secutive fragments (called r-fragments or 
r-scans; for example, r = 1, 2, 3, 5, lo) ,  
where a (single) fragment length is the 
distance between two consecutive marker 

Fig. 4. Quantile distributions 
for basic (K+R) and acidic 
(D+E) residues in human 
proteins. The protein set was 
as described in the legend to 
Table 1. There is no stochas- 
tic ordering between the two 
residue types. 

sites. In particular, we focus on the 
lengths of the k (for example, k = 1, 2, 3) 
longest and the k shortest r-fragments as 
appropriate statistics for detecting cases of 
significant clumping, significant overdis- 
persion, or excessive regularity in the 
spacings of the marker. The use of sums of 
r consecutive fragment lengths. rather - " ,  

than single (r = 1) fragment lengths, 
provides greater sensitivity for detecting 
unusual spacings in the marker array. The 
r-fragment statistics are also more tolerant 
of measurement errors and less affected by 
statistical fluctuations compared to single 
fragment lengths (42, 43). 

Minimal and maximal spacings. Consider 
a sequence of length N and a specified array 
of n markers randomly distributed in the 
sequence. These occurrences induce n + 1 
spacings (U,, U,, . . ., U,), where Uo is 
the distance before the first occurrence, U, 
is the distance from the ith occurrence of 
the marker to the i + 1" occurrence, and 
U is the distance after the last occurrence. 
Distances are scaled such that the distance 
between immediatelv adiacent markers , , 
equals 1/N. Our statistical analysis focuses 
on the extremal spacings m* = min{Uo, 
U1, . . ., UJ and M* = max{Uo, U,, . . ., 
UJ. The following classical exact probabil- 
ity calculations for independent uniformly 
distributed sites on the unit interval can 
help in the analysis of the spacings of a 
marker (44): 

0.0 
0.0 10.0 20.0 30.0 

Amino acid usage (%) 

Table 4. Compositional correlations between amino acid charge and codon group types. Correla- 
tions were calculated according to Eq. 7 for the protein sets described in the legend to Table 3. 
Positive and neutral are negatively correlated, but not significantly; strong and weak codon type 
amino acids versus intermediate types are not significantly correlated. 

Organism 
Pair 

Human Dros. Yeast E. coli 6. sub. HSV VZV CMV EBV 

Charge (+I-)* 0.560 0.632 0.492 0.614 0.595 0.230 0.300 0.220 0.260 
Codon (strong1weak)t -0.405 -0.337 -0.343 -0.030 -0.173 -0.530 -0.560 -0.530 -0.410 

*Charge alphabet: positive, K+R; negative, D+E; and neutral, all others, tCodon type alphabet: strong codon 
type, {A, G ,  P); weak codon type, {F, I, K, M, N, v; and intermediate, all others. 

1 
f o r l > b >  - 

n +  1 (9) 

where 6 = 1 if ib < 1 and 6 = 0 otherwise. 
More generally, let PL(x) denote the prob- 
ability that k of the n + 1 fragments are of 
lengths less than x; then 

{6[1-(n+L+i-k)x])" (10) 

where 6 = 1 if (n + 1 + i - k)x) < 1 and 
6 = 0 otherwise. Equation 10 allows the 
analysis of the data in terms of spacings 
other than the extremes k = 0 (m*) and k 
= n + 1 (M*). 

The evaluation of an extremal minimum 
at the 1% significance level rests on the 
determination of a* such that F(a*) = 
0.01. For an observed m* smaller than a*, 
the minimum spacing is considered signifi- 
cantly small. Similarly, the largest gap is 
considered statistically significant if the ob- 
sewed M* exceeds b*, where b* satisfies 
G (b*) = 0.01. For an observed m* too large 
[m* r c*, where F(c*) = 0.991 or an 
observed M* too small [M* < d*, where 
G(d*) = 0.991 or both, the spacings are 
considered to be overly regular. Equations 8 
and 9 apply to n sites sampled uniformly 
over a linear sequence; when the sites are 
sampled equally likely on a circular se- 
quence, the formulas are to be modified by 
replacing n with n - 1. The formulas are 
~ractical for n small or of moderate size. For 
n large, we use the asymptotic probability 
calculations set forth in Eqs. 11 and 12 
discussed below. 

Examples of anomalous residue spacings in 
some protein sequences. We discuss examples 
from two protein families, human histones 
and representative HLH DNA-binding pro- 
teins. The maximum spacing between any 
two adjacent basic residues (K, R, or H) in 
histone H2A is 29 (between positions 42 
and 7 I) ,  and, on the basis of the random 
sampling model (Eq. 9) for the given com- 
position of H2A, such a large gap length 
occurs with probability ~ 0 . 0 1 .  The second 
largest spacing (length 19 between residues 
99 and 118) is also statistically significant. 
Similarly, histone H3 has a significantly 
large maximal spacing between basic resi- 
dues of length 30 (positions 83 to 113). In 
contrast, histones HI ,  H2B, and H4, all 
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similarly high in positively charged resi- 
dues. do not show such distributional 
anomalies. The unusual spacing of basic 
residues in H2A and H3 may be associated 
with nucleosome formation and stability. 

In some cases, the two largest spacings 
occur in tandem (forming a long 2-scan, see 
below) and thus indicate an unusually long 
region essentiallv devoid of a varticular " 
residue type. We give two examples from 
the HLH vrotein familv (45). The 710- 
residue ~ rdso~h i l a  daugh;erless protein dis- 
plays a marked difference in charge between 
the NH,-terminal and COOH-terminal 
halves of the protein: of the 21 lysines, 
none occur from residues 26 to 27 1, inclu- 
sively, nor from residues 273 to 470 (highly 
significant maximal spacings), and there is 
a 271-residue stretch free of glutamates (of 
which there are 26 overall in the sequence) 
beginning at residue 52. Similarly, the 
spacing analysis indicates a significantly 
long stretch free of glycines at the COOH- 
terminus of the human transcription factor 
E2-a (El2 gene product), although the 
glycine frequency (13.3%) is actually very 
high. No anomalous amino acid spacings of 
any type are evident in most other HLH 
proteins, including the Drosophila achaete- 
scute, the mouse myoD, and the Myc pro- 
tein families. 

Spacings of palindromes in g e m i c  se- 

quences. The genome of coliphage A is 
composed of 48,502 bp. Assays on A-phage 
reveal two half genomic sections, one 
C+G-rich (-54% frequency) and the oth- 
er A+T-rich (-55%), whereas overall the 
nucleotides A, T,  C,  and G occur with 
close to equal frequencies (46). The distri- 
bution of each of the 64 6-bp palindromes 
around the A-genome was tested for cluster- 
ing, overdispersion, or persistent regularity 
(47). Of the individual 6-palindromes, four 
involved significantly long gaps (overdis- 
persion) : CAGCTG (1 5 copies), maximum 
gap M* = 21,299 bp; CATATG (7 cop- 
ies), M* = 36,001 bp; CCTAGG (2 cop- 
ies), M* = 48,428 bp; and CTGCAG (28 
copies), M* = 14,057 bp. Clumping was 
revealed for a single palindrome: 
CCTAGG (2 copies), m* = 74 bp. Extre- 
ma1 tests on the distribution of 6-bp palin- 
dromes in the linear coliphage T7 genome 
(-40 kb) did not reveal a single 6-bp 
palindrome with anomalous spacings. 

The extreme rarity of the tetranucle- 
otide CTAG in A-phage (14 occurrences) 
and E. coli (frequency ~ 0 . 0 2 % )  and of the 
DAM site GATC in phage T7 (6 occur- 
rences) prompted us to investigate more 
closely the distribution of these tetranucle- 
otides in these three organisms. CTAG is 
missing in the left half of the A-genome in 
a segment of 24,743 bp and occurrences 

Table 5. Amino acid usage correlations. Correlations were calculated according to Eq. 7 for the 
protein sets described in the legend to Table 3. Amino acid pairs exhibiting rank correlations higher 
than 0.2 or lower than -0.2 in at least two of the eukaryotic species or in both prokatyotic species 
were selected for display. Correlation coefficients between -0.2 and +0.2 are considered 
nonsignificant and are therefore not shown. 

Amino Organism 
acid 
pair Human Dros. Yeast E. coli 6, sub. 

DIE 
D/K 

AIY 
DIP 
EIF 
EIG 
EIW 
FIP 
GIK 
GIQ 
GIR 
IIP 
KIP 
LIN 
VIY 

Strongly positively correlated amino acid pairs 
0.285 0.240 0.524 0.294 

0.437 0.274 
0.31 7 

0.321 0.447 0.341 0.263 
0.357 0.431 0.248 0.346 
0.457 0.501 0.494 0.378 

0.348 0.282 0.402 
0.345 0.541 
0.345 0.332 0.327 0.306 

0.522 0.377 
0.316 0.431 

Strongly negatively correlated amino acid pairs 
-0.220 -0.308 -0.330 
-0.248 -0.489 

-0.234 
-0.259 -0.340 -0.216 

-0.298 
-0.247 -0.245 
-0.262 -0.305 

-0.279 -0.283 
-0.303 

-0.415 -0.424 

concentrate in three clusters in the right 
half. Eight are located in noncoding regions 
or at stop codons, four in open reading 
frames of undetermined expression, one in 
the CI gene near the carboxyl end, and one 
in gene S (affecting cell lysis). Thus, the 
distribution of CTAG sites in A is highly 
nonrandom. The distribution of DAM sites 
in T7 is not unusual in any way [for more 
details, see (47)l. In E. coli, CTAG occurs 
relativelv more freauentlv in the rRNA 
genes than elsewhere. The low frequency of 
CTAG persists in general bacterial ge- 
nomes entailing clustering of CTAG in the 
16s and 23s ribosomal RNA genes (47). Is 
it oossible that CUAG sites are nucleation 
or anchor points in the assembly of the 
ribosomal comolex? 

r-Scan statistics. For a given set of single 
spacings {U,, U,, . . ., UJ, r-scans are 
formed according to Ri = Z;L;-' Uj, i = 0, 
1, . . ., n - r + I-. To study the distribu- 
tion of the markers in a sequence, we 
compare the distribution of {RJ calculated 
under a theoretical model with the ob- 
served distribution of r-fragment lengths. ., - 
The extreme-valued r-scans (largest and 
smallest) are of particular use: Mf) = 
length of kth largest- r-fragment and mf) = 
length of kth smallest r-fragment. To detect 
clustering among markers, we examine all 
r-scans and ascertain whether the minimum 
is especially small with respect to the pos- 
tulated theoretical distribution of markers. 
Similarly, in deciding whether some succes- 
sive markers are excessively dispersed, we 
check the maximum length among r-scans 
to see whether it is especially large. Con- 
verselv. when the minimum r-scan length is , , - 
especially large or the maximum r-scan 
length is especially small or both, then the 
spacings of the marker are assessed to be 
excessively regular. 

To assess clustering, we use the theoret- 
ical probability that the kth smallest r-frag- 
ment [length mf)] would be as small or 
smaller than those observed if markers were 
distributed randomly (for example, sampled 
uniformly over the long sequence). The 
following asymptotic formula holds for n 
large (48): 

With x chosen so that the right side of Eq. 
11 is equal to 0.01, we declare the observed 
mf) too small if it is less than xlnl+ ' IT. 

To assess overdispersion, we use the 
theoretical  roba ability that the kth largest 
r-fragment [length Mf)] would be as large or 
larger than those observed if markers were 
in fact located randomly. The asymptotic 
formula in this case is (48) 
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With x chosen so that the right side of Eq. 
12 is equal to 0.01, we declare the observed 
Mf) too large at the 1% significance level 
when it exceeds [ln(n) + (r - l)ln(ln n) 
+ XI. 

To detect too much regularity, we use 
the theoretical probabilities that mf) is 
especially large or Mf) is especially small or 
both, calculated on the basis of Eqs. 11 and 
12. 

The r-scan process is a moving sum 
process derived from the original first-order 
orocess and therefore tends to smooth out 
random fluctuations. Sums of r contiguous 
fragments have a coefficient of variation 
(sample standard deviation divided by 
mean) inversely proportional to d, render- 
ing r-scans quite sensitive statistics in de- 
tecting clustering. For example, the meth- 
od of r-scans was oarticularlv useful for 
dissecting the heterogeneities inherent in 
the Kohara E. coli physical map data ascer- 
tained by complete digestion with eight 
enzymes that recognize 6-bp segments (Bam 
HI, Bgl I, Eco RI, Eco RV, Hind 111, Kpn I, 
Pst I, and Pvu 11) (49). In the Kohara map 
there are several sources of error in the 
data, especially measurement errors that 
were generated by recording restriction sites 
to the closest 100 bp (rounding off). 
Stretches of the mau were absent because of 
difficulties in resolving all of the fragments 
on autoradiograms. Moreover, the physical 
map appears to contain much fewer restric- 
tion sites than occur in the genome. In fact, 
after screening about 1.43 x lo6 bp of 
available nonredundant E. coli seauences 
(50) for restriction sites, we extrapolate 
that (with the exception of Bam HI) the E. 
coli genome contains more sites than were 
mapped by a factor ranging between about 
1.1 (Kpn I) and 1.9 (Eco RV) (14). The 
sequence data revealed greater disparity for 
frequent cutters than for sparse cutters, 
suggesting that the differences are due 
mainlv to undetected small fragment - 
lengths in construction of the physical map. 
Because of the digitization of restriction 
sites in units of 100 bp (50), detection of 
clustering by r-scans of low order (r = 1 or 
2) was precluded (under this scheme a 
minimum site separation of 0 units would 
not be unlikely). For each restriction en- 
zyme used, the histogram of fragment 
lengths were examined and the data (apart 
from very small sizes) followed an exponen- 
tial densitv consistent with a homoeeneous " 
distribution of sites. However, an applica- 
tion of the statistics of r-fragments (r = 10) 
revealed for mil0), my0), and mil0) a signif- 

icant cluster corresponding to 13 Pst I sites 
beginning at map position 2074.8 kb and 
spanning 13 kb (1 4, 5 1). This cluster is not 
significant based on r-fragment lengths with 
r = 5. Thus, by varying r, organization on 
different scales can be discriminated. 

Cluster of DAM sites in the on-C region of 
E. coli? DAM sites are important regulatory 
signals composed of the tetranucleotide 
GATC (52). These seauences serve in Dart \ ,  

to distinguish the template strand (fully 
methvlated) from the newlv svnthesized , , 
strand (unkethylated) during semiconserv- 
ative replication and repair (53). These 
sites are also associated with genes involved 
in the SOS response, transposon function, 
and bacteriophage infection (53). How do 
these functions affect the distribution of 
DAM sites? 

In the 245-bp sequence that defines the 
minimal ori-C region of E. coli there are 
eight DAM sites (1 3). In a 350-bp stretch 
flanking the ori-C region there are an addi- 
tional 12 DAM sites. Many of these se- 
quences are conserved in the origins of 
replication of other enterobacteria. Do the 
eight DAM methylation sites observed in a 
stretch of 245 bu that includes the E. coli 

. A  

origin of replication or that are joined with 
the additional 12 DAM sites located in the 
flanking 350 bp or both represent a statis- 
tically significant cluster? We apply the 
formula 12 first in the case of r = 7 and 
then in the case of r = 19, where n is the 
number of DAM sites throughout the E. coli 
genome. In the 1.4 x lo6 bp of available E. 
coli sequences (50), the GATC frequency is 
0.0044. O n  this basis, we extrapolate about 
n = 0.0044 x 4.7 x lo6 = 20,680 DAM 
sites over the entire genome. Now, 
exp{-x7/7!) = 0.99 when x = 1.75. 
Hence, the critical value for mi7) is (4.7 x 
lo6) (1.75/n8") = 96 bp. Thus, for a 
random sequence of the composition and 
length of E. coli, a segment of at most 96 bp 
in length that contains eight occurrences of 
the DAM site would be a statistically sig- 
nificant cluster at the 1% level. The same 
formula shows that the presence of eight 
DAM sites in a stretch of 245 bp some- 
where in the E. coli genome would occur 
with probability -0.06. Thus, the observed 
concentration of DAM sites in the ori-C 
region of E. coli is not statistically signifi- 
cant. However, repeating the calculation 
with r = 19 we find that a segment of 1,068 
bp in length or less containing 20 DAM 
sites presents a statistically significant clus- 
ter. 

Distributions of the tetranucleotide CTAG 
in human herpes virus genomes. The frequen- 
cy of CTAG is significantly low in all 
bacterial seauences and substantiallv low in 
many eukaryotic DNA sequence sets, in- 
cluding Drosophila, chicken, C. elegans, 
CMV, HSV1, and adenovirus, and below 

average in virtually all sequence collections 
examined (47). Application of the r-scan 
statistics (r = 1, 3, 5, and 10) to study the 
distribution of CTAG sites in the major 
human herpes viruses gave the following 
results: (i) CMV (genome size = 230 kb) 
contains a total of 341 CTAG sites (fre- 
quency = 0.0015). A significant cluster of 
CTAG occurs starting at position 91832 
with 11 copies (10-scan) of CTAG over a 
stretch of 1064 bp (probability < 0.01). It 
is noteworthy that the region 91800 to 
93500 is distinguished as the lytic origin of 
replication of CMV (54). Is it possible that 
these sites help in suitable protein binding 
for the formation of the preinitiation com- 
plex effecting replication? (ii) The EBV 
B-95 strain (genome size = 172 kb) con- 
tains 342 CTAG sites (frequency = 
0.0020). The most significant cluster of 
CTAG sites in EBV measured by 5-scans 
occurs at position 53082, extending for 255 
bp. This region overlaps the EBV lytic 
origin of replication (55); and (iii) The 
neurotropic herpes viruses HSVl and VZV, 
both substantially low in CTAG counts, 
have no significant clusters or gaps of 
CTAG as measured by r-scans. 

Prospects and Limitations 

An intrinsic problem of the application of 
statistics to biological data is the lack of 
firm correspondence between statistical and 
biological significance. Opting for stringent 
statistical criteria one errs on account of 
missing biologically relevant patterns, 
whereas relaxing the criteria produces a 
deluge of false positives. Probably the best 
choice is a mixture of empirical and theo- 
retical analyses with emphasis on robustness 
as discussed below. A limitation of both the 
score statistic (formulas 1 and 3) and the 
r-scan statistic (formulas 11 and 12) in this 
context is that the given probability esti- 
mates hold only asymptotically as N (length 
of the sequence) and n (number of markers) 
are large. Rates of convergence are gener- 
ally not available, and the error terms may 
be larger than the tail probabilities being 
estimated. Thus, the probability estimates 
have to be interpreted with caveats, and 
their main usefulness is to provide bench- 
marks for further analysis. 

Application of the statistics is also re- 
stricted by assumptions underlying the sta- 
tistical theorv. For examole. the formulas . . 
for the r-scan statistic were presented for a 
uniform distribution of markers. which mav 
be appropriate in some situations and not in 
others. Extensions of the theory to a non- 
uniform distribution of markers are partly 
available (43). Application of the scoring 
statistic in sequence comparisons presup- 
poses a not strongly dissimilar composition 
of the sequences being compared (7, 56, 
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57). Implementations of the method for 
this purpose (1 0) do not accommodate gaps 
in alignments, and applications to multiple- 
sequence comparisons remain computation- 
ally difficult. 

Score-based statistics present a refine- 
ment over alphabet-based statistics in that 
degrees of matching a certain property can 
be incorporated. The method is quite flex- 
ible, and recent extensions of the theory 
allow for neighbor dependencies (1 5, 16), 
random scores, and vector scores (scoring, 
for example, simultaneously size and hy- 
dropathy attributes of amino acids). An 
appropriate choice of scores for a particular 
task is not necessarily obvious a priori and 
may require a judicious amount of experi- 
mentation. Similarly, in using r-scans one 
has to discern suitable values for r that will 
provide sensitivity to anomalies in the dis- 
tribution of markers at the desired level of 
sequence organization. 

Large-scale sequencing projects are well 
under way. Besides posing formidable prob- 
lems of how to organize these data in 
accessible ways, what does this large 
amount of data bode for statistical sequence 
analysis? Because of the large number of 
multiple tests performed whenever the 
whole database is considered, virtually any- 
thing but the most extreme feature is to be 
expected to occur by chance alone. In 
particular, this applies to the evaluation of 
weak sequence similarities. In attempting 
to surmount this problem one might have 
to rely much more on multiple sequence 
alignments, which exploit the fact that 
sufficiently long words shared by several 
sequences would be more robust against 
statistical fluctuation. This is an area of 
much current investigation, and several 
new methods have been advanced (1 0,58). 

In our view, the role of statistics in 
sequence analysis is primarily exploratory 
and interactive with the data, generating 
new questions and lines of experimental 
investigation. Rather than fitting models to 
biomolecular sequences with the purpose of 
statistical hypothesis testing, the analysis of 
the extreme tails of distributions derived 
from random sequences can provide bench- 
marks for the selection of sequences, parts 
of sequences, or sequence features to con- 
centrate on for further study. Essential in 
this approach is the use of a mixture of 
different statistics and interaction with the 
data and the experimenter. The conclu- 
sions drawn from such analyses rely on 
robustness of the results. Here robustness 
includes sensitivity of the statistics to out- 
liers due to sampling biases, concordance 
among several different measures that ex- 
amine the data in different ways, and con- 
sistency among independently sampled data 
sets. There are also many challenging prob- 
lems related to the classification of protein 

and DNA sequences with reference to func- 
tion, structure, subcellular localization and 
expression, phylogenetic relations, and 
other biological criteria. Statistical stratifi- 
cation of the databases can aid in these 
tasks as more sequences become available. 
From this perspective, the accumulation of 
sequence data should continue to open 
many possibilities for empirical and theoret- 
ical research. 
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