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Fig. 3. Photoemission spectra from various 
spots on the etched image. The spectra were 
obtained with an expanded HeICd laser (442 
nm, -0.5 mW ~ m - ~ )  excitation source and a 
Princeton Instruments charge-coupled device 
photodetector/Acton Research 0.25-m mono- 
chromator fitted with a fiber optic and micro- 
scope objective lens to allow detection from 
small ( < I  mm2) sample areas. 

more brightly illuminated during the pho- 
toelectrochemical etch. The same varia- 
tions were seen on wafers with porous Si 
layers that were too thick to display the 
o~t ica l  interference ~henomena. 

Thus, the shift in wavelength maximum 
(A,,,) can be attributed to variations in the 
inherent emissive properties of the porous 
Si. The PL emission maximum on Dorous Si 
depends on the etch rate used in the elec- 
trochemical etch (1 4). Because the photo- 
current at n-Si is proportional to light 
intensity (1 5), the intensity variation 
across the projected image translates into a 
variation in the etch rate, which presum- 
ably leads to the different emission maxima 
observed. The correlation of the PL A,,, to 
photoetch light intensity was confirmed in 
separate measurements with the use of uni- 
form photoetch illumination. The value of 
A,,, ranged from 710 to 640'nm for pho- 
toetch light intensities ranging from 3 x 
1014 to 12 x 1014 photon cmP2 s-'. The 
emission maxima were also sensitive to the 
etch duration and current densities used. In 
our experiments, the etching time was 30 
min at a current density of 100 pA cm-'. 

The background in the picture that we 
used included a grid pattern. At the reduc- 
tion ratios used, the replica of the grid 
~roduced on the n-Si substrate contained 
20 lines per millimeter in each direction. 
Illumination of this area with a He/Ne laser 
generated a diffraction pattern. The spot 
spacing matched that predicted from the 
grating equation for Fraunhofer diffraction 
(1 6) and corresponded to a line separation 
on the n-Si substrate of 50 pm. Profilome- 
try measurements (Dektak 3030) showed 
no height modulation (less than &20 nm) 
on the porous Si layer, which indicates that 
the surface of the etched grating was rela- 
tively flat. Because the porosity of anodized 
porous Si depends on etch current density 

(1 7, 18), the observed diffraction presum- 
ably resulted from a periodic density (and 
refractive index) variation within the 
etched wafer. This morphology differs from 
that of conventional ruled gratings, which 
consist of mechanically imprinted grooves 
on a surface. 
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Energetics of Large Fullerenes: 
Balls, Tubes, and Capsules 

Gary B. Adams, Otto F. Sankey,* John B. Page, 
Michael O'Keeffe, David A. Drabold 

First-principles calculations were performed to compare the energies of 29 different fullerene 
structures, with mass number from 60 to 240, and of eight nonhelical graphite tubes of different 
radii. A quantity called the planarity, which indicates the completeness of the T-bonding, is the 
single most important parameter determining the energetics of these structures. Empirical 
equations were constructed for the energies of nonhelical tubes and for those fullerene struc- 
tures that may be described as balls or capsules. For a given mass number, ball-shaped 
fullerenes are energetically favored over capsular (tube-like) fullerenes. 

T h e  discovery and practical synthesis (1, 2) 
of C60 has prompted the search for other 
fullerene-lie molecules and other novel forms 
of carbon. Lamb et al. (3) have created sam- 
ples containing a wide variety of large carbon 
fullerenes of mass number up to 290. Scan- 
ning tunneling microscope images have 
shown that the molecules in these samples are 
exclusively ball-shaped. Graphitic tubes (4,5) 
and fullerene capsules (6) are other forms that 
have been proposed and imaged. At present, 
there are no simple yet reliable estimates for 
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the energies of these various structures. 
In this report we present computations of 

the equilibrium configurations and compare 
the energies of three different types of carbon 
structures: fullerene balls, graphitic tubes, and 
fullerene capsules (a tube with ball-like caps). 
In these computations we used quantum mo- 
lecular dynamics (QMD) (7-9) simulations. 
Thirty-seven different structures were simulat- 
ed, and from these ab initio results we created 
simple empirical formulas for predicting the 
energy of any size fullerene ball, tube, or 
capsule. These empirical formulas are based 
on only one parameter, the "planarity," 
which is defined from the T-bonding angle (T 
angle, or 4,). The energetic effect of the size 
of the HOMO-LUMO gap (highest occupied 
and lowest unoccupied molecular orbitals) 
was found to be of secondary importance. For 
a fixed number of atoms, fullerene balls are 
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energetically preferred over long, tube-like 
capsules. 

Iijima has imaged helical tubes of graphitic 
carbon (4), using an electron microscope. 
Although the effect of the helical pitch on the 
energetics is not yet known, we do not expect 
it to be the predominant energy contribution. 
Instead, it is expected to be an aid in the 
growth of the tubes. We consider here the 
two types of nonhelical graphitic tubes, T, 
and T I  (Fig. 1). A helical tube would be, 
geometrically at least, in between these two 
limits. 

Fig. 1. (A) On the right is shown a segment of an 
infinite T, (n, = 10) graphitic tube. On the left the 
same segment is unrolled into a flat graphitic 
sheet. (B) On the right is shown a segment of an 
infinite TII (rill = 20) graphitic tube. On the left the 
same segment is unrolled into a flat graphitic 
sheet. 

Fig. 2. (A) The ball-like fullerene I, C,,,. (B) The 
capsular fullerene D,, C,,,, the longest and 
thinnest of the C,,, capsules considered here. 

We computed the equilibrium energies 
of T, and T I  tubes of infinite length and 
varying numbers of carbon atoms around 
the circumference (n, and n 11,, respective- 
ly), using QMD. The periodiclt~ along the 
tube was fixed at a value appropriate for a 
bond length d of single-plane graphite (1.42 
A). The radius of the tube was free to adjust 
during the QMD relaxation. The computed 
total energies per atom (relative to that of 
single-plane graphite) for various numbers 
of carbon atoms around the circumference 
are shown in Table 1. 

We can model the computed energies of 
graphitic tubes with a single variable, the 
planarity of the tube. In a tight-binding mod- 
el, the interaction between two nearly parallel 
neighboring a orbitals is proportional to 
COS(+,). We define the planarity of a struc- 
ture to be the average value of cos(+,) for 
that structure. We take the normal of the tube 
to define the direction of the a orbital at each 
atom so that +, = d,/r, where d, is the 
distance between the two neighboring atoms 
in a direction perpendicular to the tube axis 
and r is the tube radius. The energy per atom 
of the tube with respect to planar graphite is 
then modeled as 

for both T, and T I  tubes. The parameter 
k, is fit to our QMD result at n, = 10, 
and k is fit at the QMD result at n I = 18. 
The values of k so found are k, = 4.195 
eV and k = 4.150 eV. We show in Table 
1 the a-angle +, and the energy as deter- 
mined from our empirical energy for- 
mula (Eq. 1); the QMD and empirical 
formulas agree very well. Since r a n ~ c  1 1  ), 
and +, a llr, the energy of a tube for 
large n,(ll) is E , ( I I ) ( ~ )  = v2 k l ( ~ ~ ) + $  
a lln:(ll)- 

Next we model large fullerenes (3) and 
assume that they all have 12 isolated five- 
membered rings and [(n/2) - 101 six-mem- 
bered rings. The QMD-relaxed molecules 
that are most nearly spherical are the icosa- 
hedral molecules Ih C60, Ih  CaO, 1 CI4,, Ih CI8, 
(Fig. ZA), and Ih CZ4,. We have not com- 
pared Ih CZ4, with other structural models, but 
both I C14, and Ih C,,, were lower in energy 
than all other simulated structures of the 
same mass. We find that Ih CaO is the only one 
of the simulated "spherical" fullerenes that is 
higher in energy than a less spherical struc- 
ture, in this case D5d C,,, one of the capsular 
fullerenes discussed below. Our computed to- 
tal energies per atom for all of these ball-like 
structures are listed in Table 2. 

1 I 1 )  = 1 I - c O s  For spherical surfaces of radius r, +, = dlr, 
where only one parameter (k, or k 1 1 )  is where dis the spacing (bond length) between 
needed for each type of tube. We average adjacent atoms on the surface. Thus r is 
cos(+,) over three neighboring atoms in T, determined by the number of atoms n and 
and T I I  tubes to give the surface number density u = (n/4.rrr2), 

which we assume to be approximately con- 
+,(T, ) = stant for fullerene balls, so that r a V%. 1 2cos( $ ) + cos( ) 1 Furthermore, if d is approximately a constant, 

cos- 7 (za) we have 

+,(TII ) = COS-I 1 \ Lr J 

3 1 where +,(60) is the a angle for relaxed I ,  
C,, (23.14'). 

(2b) We model the total energy of a large 
For large r, these become fullerene ball by separating the molecules inio 

their "pentagon" atoms and their "hexagon" 
%'Id (3) atoms. By hexagon atoms, we mean atoms 

+,= - 2r surrounded on all sides by six-membered 

Table 1. The QMD and approximate energies per atom (relative to that of single-plane graphite) of 
T,- and TI-type graphitic tubes of radius r. The number of atoms around the circumference is n, 
(n,) and the average n angle is +,. 

-- 
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E (QMD) E 
"1, I I  r,,ll (4 (e~iatorn) 4, (approx.) 

(Eq. 1) 

T, infinite tubes 
10 3.39 0.182 16.94" 0.182 (fit) 
12 4.07 0.126 14.12" 0.127 
16 5.43 0.071 0.071 
20 6.78 0.045 8.48" 0.046 

T I 1  infinite tubes 
18 3.52 0.167 16.32" 0.1 67 (fit) 
20 3.91 0.133 14.69" 
24 4.69 0.094 12.25" 
30 5.87 0.060 9.79" 

0.136 
) Eq. 2b 0.094 

0.060 



rings. In Ih C60, all atoms are pentagon atoms, 
because there are no atoms entirelv surround- 
ed by six-membered rings. The total energy is 
modeled as 

(n - 60)k(l - cos4,) + 60E6, 
E(4Tr) = n 

(5 
where E,, is the energy per atom for I, 
C,,. For the hexagon atoms, we apply the 
same (1 - cos4,) factor as for graphitic 
tubes. However, the five-membered rings 
in an icosahedral molecule are always 
located at the vertices of the icosahedron 
onto which the molecule may be mapped, 

and the sum of the angles surrounding the 
pentagon atoms is always about 120' + 
120" + 108" = 348', implying that 4, for 
the pentagon atoms changes very little as 
the molecule gets larger. Therefore, no (1 
- cos4,) factor is included for pentagon 
atoms. Fitting k is done to the energy of Ih 
C240 and yields k = 3.18 eV. The energy 
dependence on ball size n for large balls 
can be seen from Eq. 5. Because 4, scales 
as 11 fi from Eq. 4, for large n (small 4,) 
Eq. 5 becomes 

Table 2. The QMD and approximate energies per atom (relative to that of single-plane graphite) of 
fullerene ball-like molecules and the average a angle of the molecule assuming a perfect sphere. 

Fullerene Symmetry E (QMD) 
(evlatom) 

P.438 (fit) 
0.376 
0.376 
0.365 
0.365 
0.365 
0.284 
0.284 
0.284 
0.251 
0.203 
0.203 
0.158 (fit) 

Table 3. The QMD and approximate energies per atom (relative to that of single-plane graphite) of 
a sequence of capsules with caps made from "spherical" forms of C6,, C8,, C8,, and C,20. These 
capsules have either T,-type or TII-type tubes containing belts of n, or rill atoms around the 
circumference. 

Capsule Symmetry 
No, of 
added 
belts 

E (QMD) 
(evlatom) 

E (approx.) 
(Eq. 8) 

Capsules with C,, caps (n, = 10) 
1, 0 0.4383 

-- 
Capsules with C,, caps (n II = 20) 

1, 0 0.3870 

Capsules with C,, caps (n, = 12) 
D, , 0 0.3570 

0;; 12 0.2121 
Capsules with C,,, caps (n II = 24) 

D, 0 0.2881 

The energies of I C140 and Ih CIBO are 
well reproduced by our simple formula 
(Eq. 5) (Table 2). Surprisingly, the for- 
mula is also quite successful at reproducing 
the energies of the lowest energy fullerenes 
having other numbers of atoms. For C,,, 
fullerenes, for example, the simulated 
molecule with the lowest energy is the Td 
form. The QMD energy of Td C12, is about 
0.002 eV Der atom less than the value 
produced by our simple model. For C8+, 
the simulated fullerene with the lowest 
energy is the D,, form, the energy of 
which is 0.008 eV per atom less than the 
value produced by the model. In view of 
these results, we regard Eq. 5, derived 
empirically from our results for icosahedral 
balls, as approximately representing the 
minimum energy (to within about 0.01 eV 
per atom) for any large fullerene structure 
of a given mass. This energy minimum 
may not always be obtainable but should 
be approached, for a given n, as the 
planarity of the n-atom molecule ap- 
proaches the planarity of an n-atom 
s~here .  

Finally, we consider capsules, which 
are era~hit ic tubes with more or less hemi- - .  
spherical caps of carbon atoms on each 
end (such as D5* ClaO, Fig. 2B). We first 
present a simple argument showing that, if 
one considers planarity only, fullerene 
balls should be energetically favored over 
capsules. Then we present our QMD re- 
sults, which verify this prediction. 

For both balls and tubes, our empirical 
formulas show that the energy per atom of the 
structure monotonically decreases as the aver- 
age .rr angle decreases. We consider capsules, 
which have a tube of length z and radius p 
capped by hemispheres of radius p. We then 
ask, for a given surface area u of a capsule, 
what length z minimizes +$? The surface area 
a is 2rzp + 4rp2. The .rr angle of the 
hemisphere is dlp, while that of the tube (Eq. 
3) is -\r2d/2p. The average 4; is then 

which is clearly a minimum when z/p = 0. 
With our QMD program, we have sim- 

ulated four types of fullerene capsules: two 
types with fivefold symmetry and two types 
with sixfold symmetry (1 0). The energies 
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Fig. 3. The energies 
per atom (relative to 
that of single-plane 
graphite) of a selection 0.45 
of simulated fullerenes 
plotted against the - 
mass numbers of those 8 0.4 
fullerenes. The ener- c gies of ball-like > 
fullerenes (from Table 0.35 
2) are given by dia- 3 
monds. In each case, 2 
except for C,,, the en- P 

0.3 
ergy of the selected 6 
ball-like fullerene is the 
lowest energy attained $ 

p 0.25 for that mass number, m 
(For C,,,, the two low- * 
est energies are plot- 0q 
ted.) The energies of c 
capsular fullerenes 

Spherical 
c, caps -- 

C,, caps .. .. .. .. .. .. .. -. .. .. .. .. . - 

(from Table 3) are given 
0.15 by rectangles. The bro- 1 I 

ken curves are plots of 
capsular empirical 
equations derived by 0.1 
substitution into Eq. 8. 100 150 200 250 300 
The solid curve is a plot 
of Ea. 5 for ball-like 

Number of carbon atoms n 

fullere'nes. Each of the broken curves originates from a diamond on or near the solid curve, but the 
broken curves diverge from the solid curve as n increases. 

per atom computed for the relaxed config- 
urations of these fullerene capsules are 
listed in Table 3. Comparing Tables 2 and 
3, one sees that capsules of a given mass 
number are higher in energy than ball-like 
fullerenes of the same mass number. Also, 
longer thinner capsules of a given mass are 
higher in energy than shorter fatter cap- 
sules of the same mass. The one exception 
to these rules is for the energy of I h  CEO as 
compared to D5d CEO. 

The energy of a capsule can be modeled 
as the energy of the "sphericalfl,cap plus the 
energy of the finite tube 

Here EcapSu,,, Etube, and E,,, are, respec- 
tively, the energies per atom relative to that 
of single-plane graphite for the capsule, the 
tube that forms the length of the capsule, 
and the "spherical" fullerene that is sepa- 
rated to form the caps. The number of 
atoms contained in the caps is n,,,, and n is 
the total number of atoms in the capsule. 
Energies computed from Eq. 8 are given in 
Table 3. 

We now summarize our results by plot- 
ting in Fig. 3 the energy per atom of 
ball-like fullerenes and fullerene capsules 
for various numbers of atoms n. For icosa- 
hedral fullerenes, the only significant de- 
viation of the QMD results from the em- 
pirical formula is for I h  CEO. The solid line 

in Fig. 3 (Eq. 5) represents an approxi- 
mate energv minimum line for fullerene u, 

structures, which may not always be ob- 
tainable. 

The broken curves in Fig. 3 correspond 
to capsules. Six sequences of capsules are 
shown, having caps made from "spherical" 
forms of C,,, CEO, C84' ClZOj C180' and 
CZ40. These curves correspond to the sim- 
plified formula of Eq. 8. The QMD results 
for the capsules with caps made from C60, 

CEO, CE4, and CIZo are given by the 
rectangles in Fig. 3. The asymptote for 
each capsule curve is the energy of the 
eraohitic tube from which that causule 
u L 

can be constructed (see Tables 1 and 3). 
The energies of the capsules with caps 
made from C60? CEO, C849 CIZO, C180? and 
C240 asymptotically approach the n, = 
10, n l l  = 20, n ,  = 12, n l l  = 24, rill = 30, 
and n,  = 20 infinite tube energies, respec- 
tively. 

The most important conclusion from 
Fig. 3 is that, for a given number of 
atoms, long fullerene capsules are much 
higher in energy than spherical full- 
erenes. For example, a Cleo capsule is far 
higher in energy (per atom) than a ClE0 
icosahedral fullerene. This suggests that 
the process of Lamb et al. (3) for obtain- 
ing higher fullerenes, which shows no 
signs of tubular structures, is synthesiz- 
ing only the lowest energy fullerenes for 
each mass number. The calculations pre- 
sented here do not rule out the existence 
of capsules because they give only the 

energetics of the structures and do not 
include the kinetics of the formation pro- 
cess. 
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