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The Motor Cortex and the Coding of Force 

Apostolos P. Georgopoulos,* James Ashe, 
Nikolaos Smyrnis, Masato Taira 

The relation of cellular activity in the motor cortex to the direction of two-dimensional 
isometric force was investigated under dynamic conditions in monkeys. A task was de- 
signed so that three force variables were dissociated: the force exerted by the subject, the 
net force, and the change in force. Recordings of neuronal activity in the motor cortex 
revealed that the activity of single cells was directionally tuned and that this tuning was 
invariant across different directions of a bias force. Cell activity was not related to the 
direction of force exerted by the subject, which changed drastically as the bias force 
changed. In contrast, the direction of net force, the direction of force change, and the 
visually instructed direction all remained quite invariant and congruent and could be the 
directional variables, alone or in combination, to which cell activity might relate. 

O n e  problem in motor physiology con- subject. This problem has been studied 
cerns the relation between cell activity in extensively under static conditions-that 
the motor cortex and the force exerted by a is, when a constant isometric force is exert- 

ed. In this case, the rate of motor cortical 
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to one dimension (1, 2, 5, 6) or have been 
complicated by concomitant movement 
(7). In general, cell activity relates to the 
change in force (2, 5), although in several 
studies that involved movement, forces 
were not measured (4, 8). 

We use the term "static force" (9) to 
refer to postural control and "dynamic 
force" to refer to changing force patterns. 
The usual experimental situation is a com- 
bination of a changing force in the presence 
of a constant bias force (for example, grav- 
ity). In this case, the desired outcome 
depends not only on the force exerted by 
the subject but also on the force bias: the 
crucial variable is the net force acting on 
the object, which is the vector sum of the 
force exerted by the subject and the force 
bias. We assume that the force exerted by 
the subject consists of a dynamic and a 
static component. Therefore 

Net force = subject force + force bias (1) 

= dynamic force + static force 
+force bias (2) 

We assume that static force compensates for 
and is therefore equal and opposite to force 
bias, so that net force = dynamic force; we 
use these terms interchangeably. Finally, 
we define the change in force as the differ- 
ence between successive force vectors at 
times t and t + 1: 

Force change = net force (t + 1) 
- net force (t) (3) 

or, given Eq. 1, 

Force change = subject force (t + 1) 
- subject force (t) (4) 

Therefore, the change in force is the same 
for both the net force and the force exerted 
by the subject. These forces change in time 
when a net force pulse is produced in a 
specified direction and in the presence of a 
constant force bias (Fig. 1). The various 
forces are dissociated, especially dynamic 
force and the force exerted by the subject; 
the time course of the change in force is 
similar to that of dynamic force. We used 
these dissociations to examine the relation 
of motor cortical activity to these different 
forces under isometric conditions and to 
determine which one is specified by the 
motor cortex. 

For this purpose, we trained a monkey to 
grasp an isometric handle (10) with its 
hand pronated and to exert force pulses so 
that the net force was in eight visually 
specified directions. These directions were 
indicated by a target on a display placed 45 
cm in front of the animal, and a force 
feedback cursor displayed the net force on 
the handle. A steady deflection of the force 
feedback cursor was used to produce a con- 
stant bias force. In the task, the visual 
target first appeared in the center of the 
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display, and the monkey had to exert a force 
on the handle to align the net force-feed- - 
back cursor to the target cursor. After a 1-s 
period, the target jumped from the center to 
one of eight peripheral locations (every 45') 
on a circle with a 100-g force radius, and the 
monkey was required to produce a force 
pulse so that the net force-feedback cursor 
would move in the direction (k22.5") of the 
target; the animal was rewarded when this 
cursor moved past the target, which corre- 
sponded to a net force > 100 g. The force 
pulses were produced in the presence of a 
constant force bias in eight directions; in 
addition, the same force pulses were pro- 
duced in the absence of a force bias (I 1). 

The activity of 132 cells was recorded in 
the arm area of the motor cortex during 
performance of this task (1 2). The activity 
of 74 of 132 (56.1%) cells during the 

Fig. 1. (Left) Forces defined in the text: the 
force bias (F,,,,), the force exerted by the 
subject (F,,,,,,,), the static force (F, ,,,, ,), the 
dynamic force (F,,,,,,,), and the net force 
(F,,,). (Right) Time-varying changes in these 
forces when F,,,,,,, increases in magnitude 
and is in the visually instructed direction V 
(arbitrary data). Bold letters indicate vectors. 
Hatched vectors indicate F,,,,; broken vector 
indicates F,,,,,,. 

reaction and force production time was 
directionally tuned (13); this tuning was 
preserved across the force biases used (Fig. 
2). This finding suggests that the cell activ- 
ity varies with the dynamic force or the 
change in force but not with the force 
exerted by the subject; unlike the first two 
forces, the force exerted by the subject 
changed drastically according to the force 
bias (Fig. 3). In contrast to cell activity, the 
electromyographic (EMG) activity of mus- 
cles active in the task changed appreciably 
with the force bias (1 4). 

The relation of neuronal activity to the 
various forces was confirmed with the neu- 
ronal population vector (1 5), which can be 
calculated as a time-varying signal (1 6, 17) 
and, therefore, can be compared to the 
time-varying dynamic force, to the force 
exerted by the subject, and to the change in 
force (1 8). The population vector was re- 
lated to the dynamic force or to the change 
in force but not to the force exerted by the 
subject (Fig. 4) (1 9). Another example is 
illustrated in a different form (cover). In 
this case, the force bias was in the direction 
of the pink line. Successive samples (every 
10 ms) of the average force exerted by the 
subject are shown by the blue lines. The 
red, green, and yellow lines indicate the 
dynamic force, the population vector, and 
their overlap, respectively, over time. The 
dynamic force was dissociated from the 
force exerted by the subject, and the pop- 
ulation vectors were related to the former 
and not to the latter. 

We focused on multidimensional force 
as the motor output produced by the arm 
and chose an isometric task because the 
analysis of forces in multidimensional 

Fig. 2. Force directional tuning and its invariance across force biases for the impulse activity (three 
repetitions) of one motor cortical cell. The directions of the dynamic force and the force bias are 
shown in the rows and columns, respectively, including the case of no force bias (first column). 
Rasters are aligned to the onset of the peripheral stimulus (time zero); the time scale is 100 ms per 
division. 

reaching movements is complicated by the 
Dresence of interactional forces (20). We 
Sought to dissociate the dynamic forde, the 
force exerted bv the subiect. and the 

< .  

change in force. For that purpose, we used 
a task that required the production of force 
pulses in the presence of constant bias 
forces in various directions; such bias forces 
have been used before (4). We also used 
"open loop" force pulses without a stopping 
requirement in order to study the initiation 
of a motor output without constraints on 
the accuracv of the magnitude of force to be - 
exerted and without interference by static 
processes related to the maintenance of 
steady force at different levels. 

Our data show that the activity of motor 
cortical cells was tuned with resDect to the 
direction of two-dimensional isometric 
force ~ulses and that this directional tuning - 
was similar across force biases in different 
directions, as observed previously in a 
movement study (4). Thus, single-cell ac- 
tivity did not relate to the force exerted by 
the subject, which changed under these 
conditions. In contrast, the direction of 
dynamic force, the change in force, and the 
visually instructed direction all remained 
invariant and c o n b e n t  across different 

u 

force biases and could be, alone or in 
combination, the directional variables to 
which cell activity is related. 

This directional tuning has been docu- 
mented in both isometric and movement 
(4, 15, 21) conditions. In the case of 
movement conditions, it was proposed (4) 
that this invariance reflects a relation to the 
direction of movement irres~ective of ex- 
ternally applied loads-that is, a relation to 
kinematic (movement) planning as con- 
trasted with kinetic (force) implementation 
(22). On the basis of this distinction and ~, 

the relative insensitivity of cell activity in 
parietal area 5 to static bias forces, Kalaska 
and co-workers (23) hypothesized that 
movement planning is hierarchically orga- 
nized, with area 5 of the parietal cortex 
providing the kinematic plan and the motor 
cortex participating in both kinematic and 
kinetic aspects of movement. Although 
these ideas may be applied to movements, 
they cannot be properly applied to isomet- 
ric forces because for these forces there is no 
motion and, therefore, strictly speaking, no 
kinematics: in this sense, the isometric case 
is all kinetics (that is, force-related). 

The mechanical conditions for the gen- 
eration of the directed motor o u t ~ u t  are 
also very different in movement and isomet- 
ric conditions-that is. when a mass to be 
accelerated is present (movement) or ab- 
sent (isometric force). The presence, then, 
of directional tuning in both movement 
and isometric force conditions suggests that 
the common underlying factor for motor 
cortical activity may relate to an abstract 
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dynamic factors was suggested by a recent 
analysis of EMG activity (30). 
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