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The neurg-al hormone oxytocin (OT) is the most potent uterotonic agent known 
and is used to induce labor. Yet, endogenous circulating OT appears not to participate in 
the induction of labor. As shown here, the finding of OT messenger RNA and peptide in 
the uterus suggests a solution for this paradox. During gestation, rat uterus OT messenger 
RNA increased more than 1 Sfold and, at term, exceeded hypothalamic OT messenger 
RNA by 70-fold. Thus, during parturition, OT may act primarily as a local mediator and not 
as a circulating hormone. 

Although premature labor is a major cause 
of early neonatal death, the mechanisms 
initiating labor are poorly understood. The 
strongest uterotonic agent known is the 
hypothalamic nonapeptide oxytocin (OT) , 
a neurohormone that is released into the 
circulation at the neurohypophysis (1, 2). 
Yet, circulating OT is not essential for the 
initiation or maintenance of spontaneous 
labor (3-8). Normal parturition has been 
observed in rats and humans in the absence 
of circulating OT in cases of experimental 
or clinical pituitary gland dysfunction (4, 
5). Administration of OT antiserum sup- 
presses lactation but fails to affect parturi- 
tion (6). Moreover. there is no consensus . , 
whether or not an increase in the amount of 
circulating OT precedes the actual onset of 
labor (7,8). h a  result, it has been difficult 
but seemingly unavoidable to accept the 
notion that OT, an endogenous product 
with a strong pharmacological potential, is 
devoid of any physiological role in parturi- 
tion. We investigated the possibility that 
OT could exert its action by means of a 
pathway that daers from the classical hor- 
monal pathway. 

Whole uteri were dissected from non- 
pregnant, diestrous female rats and from 
rats at 14, 18, and 21 days of gestatiofi and 
at 1, 2, and 9 days of lactation. RNA was 
extracted and analyzed by Northern (RNA) 
blot with an oligonucleotide probe comple- 
mentary to OT mRNA (9). The amount of 
OT mRNA remained small in the uteri of 
nonpregnant rats but increased > 150-fold 
during pregnancy (Fig. 1, A and C). The 
rise in OT uterine mRNA was very rapidly 
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reversed after delivery (Fig. 1C). By con- 
trast, hypothalamic OT mRNA increases 
less than threefold during pregnancy and 
remains elevated during lactation (9). With 
the relative intensity of the hybridization 
signals and the amount of total RNA per 
organ taken into consideration, the uterus 
of a 21-day-pregnant rat contains about 70 
times more OT mRNA than the hypothal- 
amus, the main site of neuronal OT gene 
expression (1 0). 

The OT mRNA detected in pregnant 
rat uterus was smaller than the correspond- 
ing transcript in the rat hypothalamus. 
However, after removal of polyadenylate 
[poly(A)] tails, hypothalamic and uterine 
OT mRNA were of equal size (Fig. 1B). 
This indicates that the size daerence de- 
tected between these two mRNA species is 
a result of daerences in poly(A) tail 
lengths. Polymerase chain reaction (PCR) 
amplification was used to establish whether 
any other daerences existed between uter- 

ine and hypothalamic OT transcripts. 
Three daerent pairs of exon-specific prim- 
ers were used to amplify uterine and hypo- 
thalamic cDNAs. For each pair of primers, 
amplification of either uterine or hypotha- 
lamic cDNA generated products of identi- 
cal size (Fig. 2). In each case, the size of the 
products obtained corresponded to the size 
predicted from the structure of the rat OT 
gene (11). 

To establish whether OT peptide existed 
in uterine tissue, we assayed the amounts of 
uterine immunoreactive OT (ir-OT) by 
radioimmunoassay (RIA) (1 2). Concomi- 
tant with the rise in OT mRNA, there was 
a 35-fold increase in ir-OT during pregnan- 
cy. Uterine extracts of 21-day-pregnant rats 
contained 2.05 * 0.24 ng of ir-OT per 
gram of wet weight (mean k SE; n = 4), 
whereas uterine extracts of nonpregnant, 
diestrous rats contained only 0.06 k 0.01 
ng of ir-OT per gram of wet weight (n = 4). 
Uterine ir-OT was further characterized by 
high-performance liquid chromatography 
(HPLC) analysis, in which the ir-OT pres- 
ent in the uterus from pregnant rats con- 
sisted of two peaks of immunoreactivity. 
The first peak (54% of total immunoreac- 
tivity) co-eluted with synthetic, COOH- 
terminally amidated OT nonapeptide (Fig. 
3). Molecular sizing of the second HPLC 
peak indicated that it consisted of material 
with an apparent relative molecular weight 
(M,) of 11,000 (13). This material was 
efficiently converted to material co-eluting 
with the nonapeptide OT by three cycles of 
freezing and thawing. These data suggest 
that the material of larger molecular size 
consists of a noncovalent association of OT 
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Northern blot was hybridized with an oligonucleotide probe (OT-27) (9) 
specific to exon C. Arrowheads indicate the positions of the 28s and 

1 2 3 4  18s ribosomal RNA bands. RNA preparation and Northern blot analysis 
were performed as described (9, 25). (B) Effect of poly(A) tail removal. 

Lane 1, hypothalamic RNA (50 kg) with intact poly(A) tail; lane 2, deadenylated hypothalamic RNA 
(50 pg); lane 3, deadenylated uterine RNA (10 kg) at gestational day 18; lane 4, uterine RNA (10 
pg) at gestational day 18 with intact poly(A) tail. RNA was deadenylated as described (9, 25). The 
lanes labeled (-) contained RNA samples treated with ribonuclease H (RNase H) without prior 
hybridization to oligo(dT),,-,,. The lanes labeled (+) indicate RNA samples hybridized with 
oligo(dT),,-,, before RNase H treatment. Oligonucleotide OT-27 was used as a probe. Arrowheads 
indicate the positions of the 28s and 18s ribosomal RNA bands. (C) Quantitative analysis of uterine 
OT mRNA accumulation during gestation and lactation. Northern blots were scanned densitomet- 
rically (26). To control for equal loading of wells, we compared total amounts of polyadenylated 
mRNA present in different lanes by rehybridizing the blots with labeled oligo(dT) (25). Maximum 
variability within a given blot was +25% of the mean. Each bar represents the mean -c SE of at least 
three independent experiments. 
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Fig. 2. Reverse transcript'i and PCR analysis of hypothalamic and haafialamus l.L??!L 
uterine OT mRNA. After reverse transcription of RNA, cDNA was l , ~ g , c  d,c 
arnplifkd by the primer pairs A+B-; A+/C-; or B+/C- as described 
(15). A+, exon A-specific sense-strand primer corresponding to -I 350 
sequences +3 to +26 of the rat OT gene [numbering is based on 
the published sequence of the rat OT gene (1 I), taking the cap site 
as +I]. 6-, exon B-specific antisense-strand primer (+559 to 1:: 

-1 95 

+584); B+, exon B-specific sense-strand primer (+416 to +434); 
and C-, exon C-specific antisense-strand primer (+a38 to +864). -1 350 
Upper panel, agarose gel analysis of amplification products. First- 
strand cDNA was synthesized by reverse transcription of RNA @,-* 2; 
derived from rat hypothalamus (lanes 1 to 3) or uterus (lanes 4 to 6). -195 

Lower panel, Southem (DNA) blot analysis of PCR-amplified prod- 1 2  3 4 5 6  

ucts. A Southem blot of the agarose gel shown in the upper panel was hybridized with an antisense 
exon Bspecific probe complementary to sequences +481 to +506 of the rat OT gene. Size 
markers are indicated in base pairs at the right of the figure. 
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Flg. 3. HPLC analysis of immunoreactive OT 
extracted from the uterus of a 21-day-pregnant 
rat. Fractiis were eluted with a linear gradient 
from 0 to 48% of acetonitrile in H,O that con- 
tained 0.1% TFA (27). Arraw indicates the 
elution position of synthetic OT nonapeptide. 

and a molecule with an M, of 10,000, most 
likely the OT-associated neurophysin 
(NpI). Similar OT-NpI complexes have 
been observed in extracts of the hypothal- 
amus, ovary (14). and placenta (15). 

To determine the cellular site of OT 
gene expression and OT peptide accumula- 
tion. we used in situ hvbridization and 
immunocytochemistry to analyze sections 
of uteri from nonpregnant, diestrous rats 
and from rats at 21 days of gestation. The 
results confirmed that the OT gene is highly 
expressed in uteri from pregnant rats. In the 
uterus of a rat pregnant for 21 days, in situ 
hybridization revealed very dense grains 
over the endometrium (Fig. 4), and immu- 
nocytochemistry indicated that most of the 
ir-OT was present in the epithelial cell 
layer of the endometrium (Fig. 5A). In 
nonpregnant rats, these same cells dis- 
played very little ir-OT (Fig. 5C). 

The demonstration that the rat uterus 
itself is the major site of OT gene expres- 
sion during the later stages of pregnancy 
expands our understanding of the role of 
OT in the initiation and maintenance of 
parturition. Our findings resolve the appar- 
ent paradox between the powerful actions 
of exogenously administered OT and the 
lack of unequivocal evidence for a role of 
circulating OT. Our data suggest that, with. 

Fig. 4. In situ hybridization of a 35S-labeled 
oligonucleotide probe (OT-27) to sections of a 
rat uterus. (A) Uterus of 21-day-pregnant rat. 
(6) Uterus of nonpregnant, diestrous female 
rat. Exposure time = 1 week (28). 

respect to parturition, OT acts as a para- 
crine or autocrine mediator rather than as a 
circulating hormone. This view is compat- 
ible with the findings that intravenous in- 
jections of OT antagonists, but not OT 
antibodies, suppress spontaneous uterine 
contractions (6. 16). The identification in 
the endometri'al epithelium of OT receptors 
that are linked to prostaglandin production 
(17) supports autocrine action of OT on 
epithelial prostaglandin synthesis. More- 
over, OT produced in the endometrium 
may reach the myometrium via stromal 
veins and interact with myometrial OT 

Flg. 5. lmmunocytochernical staining of sec- 
tions of rat uterus with an antibody to OT. (A) 
Uterus of 2lday-pregnant rat. (B) Same as (A). 
but nonimmune serum was used instead of 
primary antiserum. (C) Uterus, stained with 
immune serum, of nonpregnant, diestrous fe- 
male rat. Sections were immunostained with an 
avidin-biotin complex (29). 

receptors. Although our concept now ap- 
pears as an obvious solution to this paradox, 
expression of the OT gene in the uterus 
may not have been noticed before because 
the gene is expressed only for a short time. 
Nevertheless, the presence of neurophysin- 
like immunoreactivity in the uterus has 
been noted (1 8). 

Uterine OT binding sites undergo a 
dramatic up-regulation before parturition 
(19). Thus, it appears that the uterus.con- 
tains an intrinsic OT system hi which both 
ligand and receptor are subject to strict 
regulation. To what extent the two events 
are causally related is unclear, but several 
examples of ligand-induced receptor up- 
regulation are known (20). The rise in 
uterine OT gene expression, in concert 
with the rise in uterine OT receptors, may 
represent the trigger for parturition. Thus, 
dysregulation of uterine OT gene expres- 
sion may be an underlying cause of prema- 
ture or delayed labor. 
Note added in pmof: OT gene expression 

has also been observed in the human uterus 
(30) - 
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Early Stages of Motor Neuron Differentiation 
Revealed by Expression of Homeobox Gene Islet- I 

Johan Ericson, Stefan Thor, Thomas Edlund, 
Thomas M. Jessell,* Toshiya Yamada 

Motor neurons in the embryonic chick spinal cord express a homeobox gene, Islet-1, soon 
after their final mitotic division and before the appearance of other differentiated motor 
neuron properties. The expression of Islet-1 by neural cells is regulated by inductive signals 
from the floor plate and notochord. These results establish Islet-1 as the earliest marker 
of developing motor neurons. The molecular nature of the Islet-1 protein suggests that it 
may be involved in the establishment of motor neuron fate. 

During embryonic development the verte- 
brate nervous system generates a diverse 
array of neuronal cell types, which are 
characterized by their position of origin, 
axonal projections, and synaptic connec- 
tions. One of the neuronal types for which 
the processes of axonal pathfinding and 
synapse formation have been documented 
in most detail is the spinal motor neuron 
(I).  In contrast, the events that control the 
generation of motor neurons remain largely 
obscure. In chick embryos, spinal motor 
neurons derive from progenitor cells in the 
neural tube that give rise also to other 
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neurons and to glial cells (2). The commit- 
ment of neural progenitors to a motor neu- 
ron fate appears to be regulated, in part, by 
signals that derive from axial mesodermal 
cells of the notochord and floor plate cells 
at the ventral midline of the neural tube 
(3-5). Insight into the molecular mecha- 
nisms involved in the generation of motor 
neurons requires the identification of genes 
that are expressed at the initial stages of 
motor neuron differentiation. Here we re- 
port that embryonic chick motor neurons 
express the homeobox gene Islet-I (6), a 
member of the subfamily of homeobox 
genes (7) that contain cysteine-rich Ln- I I ,  
Isl- I Mec-3 (LIM) domains (6, 8, 9). Other 
members of this family include Lin- 1 I and 
Mec-3, which have been shown to regulate 
cell fate in Cuenorhbditis eleguns (8, 9). 

Islet-1 was originally identified as a pro- 
tein that binds to enhancer elements in the 
rat insulin gene (6). In the adult rat, Islet-1 
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