
observed -312 power dependence of ÿ rob-
ability on gap length. 

The final outcome of the exhaustive 
matching is a reorganized database that can 
be rapidly searched using the DARWIN 
(Data Analysis and Retrieval With Indexed 
NucleotidePeptide Sequences) system 
(19). Each of the 1.7 x lo6aligned pairs of 
subsequences that result from the exhaus-
tive matching is characterized bv an evolu-

c, 

tionary distance measured in PAM units. 
DARWIN, taking a PAM distance from 
the user, rapidly reconstructs the entire 
database in the form of sets of "connected 
components," entries joined by a match 
with every other entry in the component at 
or below the user-designatedPAM. Because 
the PAM distances are accompanied by a 
statistical variance, evolutionary trees (20, 
21) constructed from these distances by 
DARWIN are rigorous; they are accompa-
nied by a probability score for the most 
probable connectivity, probabilistic se-
quences for the ancestral proteins at the 
nodes of the tree, and a multiple alignment. 

At very low PAM distances, the con-
nected components include very similar 
sequences, multiple entries in the database, 
and entries that .differ only because of se-
quencing or entry error. At increasing 
PAM distances, however, connected com-
ponents grow to include families and super-
families of proteins. Repetitive sequences 
are the only feature that significantly joins 
apparently nonhomologous entries into 
connected components. From the total 
number of connected components plotted 
as a function of PAM distance (Fig. 4), the 
number of different protein types in the 
database can be estimated. Even conserva-
tive estimates indicate the existence of 
several thousand separate families of pro-
teins (8). Finally, from these connected 
components, proteins and metabolisms can 
be reconstructed for various ancestors of 
modem organisms (10). Several of these 
reconstructed ancient proteins have now 
been prepared and studied in these labora-
tories (22). 
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Total Chemical Synthesis of a D-Enzyme: 
The Enantiomers of HIV-1 Protease Show 

Demonstration of Reciprocal Chiral 
Substrate Specificity 

R. C. deL. Milton, S. C. F. Milton, S. B. H. Kent* 
The D and L forms of the enzyme HIV-1 protease have been prepared by total chemical 
synthesis. The two proteinshad identicalcovalent structures. However, the folded protein-
enzyme enantiomers showed reciprocal chiral specificity on peptide substrates. That is, 
each enzyme enantiomer cut only the corresponding substrate enantiomer. Reciprocal 
chiral specificitywas also evident in the effect of enantiorneric inhibitors. These data imply 
that the folded forms of the chemically synthesizedD- and L-enzymemolecules are mirror 
images of one another in all elements of the three-dimensional structure. Enantiorneric 
proteins are expected to display reciprocal chiral specificity in all aspects of their bio-
chemical interactions. 

T h e  inherent chirality of "natural" organic 
compounds as products of physiologicalpro-
cesses was first described by Pasteur (1, 2). 
The studies of Emil Fischer in the latter part 
of last century on the action of enzymes on 
chiral sugars led him to formulate his "lock 
and key" hypothesis as an explanation for 
the ability of the "asymmetrically con-
structed agent from yeast cells" (that is, an 
enzyme) to discriminate enantiomeric 
forms of a sugar substrate (3). On the basis 
of such observations of stereochemical spec-
ificity, Fischer believed that biological mac-
romolecules (carbohydrates and proteins) 

Department of Cell Biology, Scripps Research Instl-
tute, La Jolla, CA 92037. 
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were composed exclusively of the D-sugars 
and the L-amino acids. It is now well 
established that the biosphere is inherently 
chiral, that each class of biological macro-
molecules is made up of monomer mole-
cules of uniform chirality (4), and that the 
biochemical interactions of biological mac-
romolecules are inherently chiral. 

Enzymes, for example, invariably act 
only on one enantiomer of a chiral sub-
strate, or generate only one diastereomer 
from a prochiral substrate (5). This speci-
ficity can be related to the chiral structure 
of the enzyme molecule, including the 
three-dimensional folding of the polypep-
tide backbone and the orientation of the 
amino acid (aa) side chains in the folded 
protein molecule (3, 5, 6). To date only 
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L-enzymeshave been described; this leaves 
the presumed properties of D-enzymes, 
which include folded structure, enzymatic 
activity, and chiral specificity, as unex-
plored questions. 

Advances in the total chemical synthe-
sis of proteins (7-9) have made possible the 
reproducible production of homogeneous 
crystalline L-[A~~~~,~~,'~~,'~~]HIV-1 prote-
ase (L-HIV PR) (10-12). We undertook 
the total chemical synthesis of 
D-[A~~~~.~~.'~~,'~~]HIV-~protease (SHIV 
PR),and compared the properties [covalent 
structure, physical properties, circular di-
chroism (CD) spectra, and enzymatic activ-

Molecular mass  (daltons) 

Fig. 1. Covalent characterization of the D-and 
L-enzyme enantiomers. Deconvoluted ion-
spray mass spectrum of (A) the L-enzyme; 
observed monomer molecular mass 10,748& 4 
daltons; and (B) the D-enzyme; observed 
monomer molecular mass 10,751 & 3 daltons. 
Calculated mass: 10,748.0 daltons (monoiso-
topic), 10,754.7 daltons (average). Purified, 
folded, chemically synthesized [Aba67,95]HIV 
PR samples in pH 6.5 MES buffer-1 0% glycerol 
were subjected to desalting by reversed-phase 
high-performance liquid chromatography. The 
collected protein peak was analyzed by ion-
spray mass spectrometry (29).Under the con-
ditions used (50%acetonitrile,50%water, 0.1% 
trifluoroacetic acid)the enzyme is denatured. In 
the deconvoluted mass spectra shown,the raw 
mass-to-chargedata have been subjected to a 
high-pass digital filter and then sorted to yield 
all parent molecular species between 10 and 
11 kD. This deconvolution procedure mathe-
matically reduces the multiple charge states 
observed for a given molecular species to a 
single molecular mass. 

ity] of the D- and L-enantiomeric forms of 
this enzyme. 

In separate experiments, the protected 
polypeptide chains corresponding to the L-
and the D-sequences of the [Aba67*95]HIV 
PR 99-aa monomer (12) were prepared by 
total chemical synthesis (13). The products 
were de~rotectedand worked UD individu-
ally, and the synthetic enzymes prepared by 
folding from denaturant as previously de-
scribed (14). 

Analytical reversed-phase high-perfor-
mance liquid chromatography (HPLC) 
gave identical retention times for the two 
synthetic polypeptide chains, and the two 
products had the same molecular weight, 
within experimental uncertainty, by ion-
spray mass spectrometry (Fig. 1). The com-
plete amino acid sequence of the D-enzyme 
99-aa monomer was determined (15) and 
was shown to be the same as that of the 
L-enzyme. Thus, the two synthetic enzyme 
molecules had identical covalent structure. 

Differences between the two molecules 
were revealed in chiral interactions. The 
CD spectra of the individual D- and L-HIV 
PR enantiomers revealed equal and oppo-
site optical rotations (16), as expected for 
enantiomeric protein molecules. The enzy-
matic properties of the enantiomeric pro-
teins were evaluated with a fluorogenic 
assay in which a hexapeptide analog of a 
natural GAG cleavage site was used as 
substrate (17). The two synthetic enzyme 
molecules were eauallv active. but showed. , 
reciprocal chiral specificity in that the 
L-enzvme cleaved onlv the L-substrate 
whereas the D-enzyme cleaved only the 
corresponding D-substrate (Fig. 2). Simi-
larly, the enantiomers of the pseudopep-
tide inhibitor, MVTlOl (Ac-Thr-Ile-Nle-+-
[CH2NH]-Nle-Gln-Argsamide)(Ac, acetyl, 
and Nle, norleucine) (11), were evaluated 
for their effect on D- and L-HIV PR (Table 
1). As expected, the chiral inhibitor; were 
effective only against the corresponding 
enantiomer of the enzyme, that is, 
L-MVT101 inhibited L-HIV PR but not 
the D-HIV PR-catalyzed reaction, and 
D-MVT101 inhibited D-HIV PR but had no 
effect on the L-enzyme-catalyzed reaction. 

Table 1. Chiral inhibitors show reciprocal chiral 
specificity against D-and L-HIV PR. The D-and 
L-enzymes were separately assayed by the 
fluorogenic assay method (17) with the corre-
sponding chiral substrate, in the presence of 5 
x IC,, concentration of inhibitor. The inhibitor 
Evans Blue is a nonpeptide, achiral mixed 
competitive-uncompetitive inhibitor of HIV PR 
(28). 

-

Enzyme L-MVTl Ol D-MVTl Ol Evans Blue 

SCIENCE VOL. 256 5 JUNE 1992 

Interestingly, the achiral inhibitor Evans 
Blue, which shows mixed inhibition kinet-
ics, was a potent inhibitor of both enanti-
omers of the enzyme (Table 1). 

The HIV PR exists as a homodimer; that 
is, a single enzyme molecule is made up of 
two identical 99-aa folded polypeptide 
chains (10, 11). HIV PR is highly active, 
showing rate enhancement of about 10''-
fold over uncatalyzed peptide-bond hydro-
lysis (18, 19). It is a highly specific enzyme 
that cleaves peptides as well as proteins (18, 
20) and its specificity is determined by the 
interactions of the three dimensionally 
folded enzyme molecule forming a complex 
with six consecutive amino acid residues in 

Fig. 2. Comparative activity of the HIV PR 
enantiomers on enantiomers of a chiral fluoro-
genic substrate. (A)L-Enzymewith L-substrate. 
(B) L-Enzymewith D-substrate.(C) D-Enzyme 
with L-substrate.(D) D-Enzymewith D-s~bstrate. 
The L-enzymeacts only on the L-substrate,and 
the D-enzymeacts only on the D-substrate. 
Aliquots containing equal amounts (as deter-
mined by amino acid analysis) of the purified, 
folded enzyme preparations were used in a 
fluorogenicassay ( 17).The increase in fluores-
cence was recorded on a continuous chart 
recorder. 



L-HIV protease b H I V  protease 

Fig. 3. Ribbon representations (30)of the polypeptide backbone of the homodimerlc HIV PR (Left) 
L - [ A ~ ~ ~ ~ , ~ ~ , ~ ~ ~ ~ ~ ~ ] H I VPR, based on the x-ray crystallographic coordinates (11) of the chemically 
synthesized enzyme cornplexed with a substrate-derived peptlde inhibitor (inh~bitoris not shown). 
(Right)The folding of the D - [ A ~ ~ ~ ~ , ~ ~ , ~ ~ ~ , ~ ~ ~ ] H I VPR polypeptide backbone suggested by the data 
in this report. This model was generated by performing a mirror-image transformation of the 
L-enzymedata. The folded backbone "ribbon" structures are nonsuperirnposable mlrror images 
and contain numerous chiral elements of secondary, tertiary, and quaternary structure. Note, for 
example,the relatedness of the flaps to one another, the relatedness of the helix segments to the 
neighboring p strands, the characteristic twist (31) (right-handed, in the L-protease)of the 
antiparallel p strands in each flap, and the handedness of the helical segments. 

the substrate polypeptide chain (11, 18). As 
with all enzymes, H N  PR owes its specificity 
and catalytic activity to the precise three-
dimensional (3-D) structure formed by specif-
ic folding of the polypeptide chain (6), and to 
precise geometric interactions in the specific 
complexes formed with substrates (3, 5). The 
observed reciprocal chiral specificities, there-
fore, show that the folded forms of the D- and 
L-enzyme molecules are mirror images of one 
another in all elements of the 3-D structure 
res~onsiblefor the enzvmatic activitv. The 
extensive nature of these interactions (I 1) 
im~liesthat the two e n m e  molecules are 
mirror images in every respect (21),consis-
tent with the observed equal and opposite 
CD spectra. Most notably, the folded form 
of the polypeptide backbone (that is, ignor-
ing the side chains) is itself a chiral entity 
that must exist in mirror image form in the 
two protein enantiomers (Fig. 3). 

The folded 3-D structure of an enzyme 
molecule contains numerous chiral ele-
ments in secondary and supersecondary 
structure, in the tertiary structure, and in 
the quaternary structure (Fig. 3). Since the 
only chiral element introduced in the 
chemically synthesized polypeptide chains 
is the stereochemistry at the amino acid C a  
atoms (and the Cp atoms of Thr and Ile), 
our results demand that all stereochemical 
aspects of the folded enzyme molecule, from 

secondary to quaternary structure, are de-
termined simply by the stereochemistry of 
the polypeptide backbone. Thus, the recip-
rocal chiral properties of the chemically 
synthesized enzyme enantiomers are a fun-
damental demonstration that the final fold-
ed 3-D structure and consequent biological 
activities of this 2 1.5-kD homodimeric en-
zyme molecule are completely determined 
by the amino acid sequence (22). 

The observed reciprocal chiral properties 
of the mirror-image enzyme molecules de-
scribed in this report serve to reinforce and 
generalize the chiral nature of biochemical 
interactions of proteins. The chiral proper-
ties of the protein molecules themselves, 
which give rise to this behavior, are given 
only cursory attention in biochemical texts. 
We can now state, based on experimental 
evidence, that protein enantiomers should 
display reciprocal chiral specificity in their 
biochemical interactions. 

The observation that both enantiomers 
of HIV PR were equally affected by the 
achiral inhibitor Evans Blue suggests a 
number of potentially significant implica-
tions. First, the unnatural enantiomer of an 
enzyme that operates on an achiral sub-
strate and yields an achiral product (such as 
carbonic anhydrase) should be fully func-
tional in vivo. This may have important 
potential therapeutic applications. D-En-

zymes are expected to be long-lived in vivo 
(in an L-protein biosphere) because they 
would be resistant to naturally occurring 
proteases that would in general attack only 
proteins made up of L-amino acids. D-Pro-
teins may also be nonimmunogenic (23). 

D-Protein molecules have other poten-
tially practical applications (24, 25). At the 
present time D-enzymes, and D-proteins in 
general, are accessible only by total chem-
ical synthesis (26). Recent innovations 
(27) in the total chemical synthesis of 
proteins should considerably increase the 
utility of this approach to the preparation of 
protein enantiomers. 
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suit is that a p T cells contribute to the 
eradication of foreign pathogens by direct 
cytotoxicity toward infected cells and by 
the stimulation of B cell production of 
antigen-specific antibodies (3). However, 
the degree to which B cell development is 
uniformly dependent on a p T cells is un­
clear. Some B cell responses are apparently 
T cell-independent (4), and there may also 
be a negative influence of T cells on B cell 
development (5). Experiments that exam­
ine B cell development in congenitally 
athymic, nude mice have frequently yielded 
conflicting results (6), presumably because 
this mutant does not eliminate a p + T cells 
comprehensively. 

In contrast to cells that bear the a p 
TCR, the biological function of 78 TCR-
bearing cells is unknown. There is strong 
similarity between the structures of a p and 
78 TCR (7), and cell surface expression of 
both occurs in association with a cluster of 
proteins termed CD3. 78 T cells that rec­
ognize peptides and MHC antigens have 

Lymphoid Development in Mice Congenitally 
Lacking T Cell Receptor ap-Expressing Cells 

Karen L. Philpott,* Joanne L. Viney, Graham Kay, 
Sohaila Rastan, Edith M. Gardiner, Sarah Chae, 

Adrian C. Hayday, Michael J. Owen 
Vertebrate T cells express either an a0 or 78 T cell receptor (TCR). The developmental 
relatedness of the two cell types is unresolved. a0 + T cells respond to specific pathogens 
by collaborating with immunoglobulin-producing B cells in distinct lymphoid organs such 
as the spleen and Peyer's patches. The precise influence of a0 + T cells on B cell 
development is poorly understood. To investigate the developmental effects of a0 + T cells 
on B cells and 78+ T cells, mice homozygous for a disrupted TCRa gene were generated. 
The homozygotes showed elimination of a0 + T cells and the loss of thymic medullae. 
Despite this, 78+ T cells developed in normal numbers, and there was an increase in 
splenic B cells. 
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