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The entire protein sequence database has been exhaustively matched. Definitive mutation 
matrices and models for scoring gaps were obtained from the matching and used to 
organize the sequence database as sets of evolutionarily connected components. The 
methods developed are general and can be used to manage sequence data generated by 
major genome sequencing projects. The alignments made possible by the exhaustive 
matching are the starting point for successful de novo prediction of the folded structures 
of proteins, for reconstructing sequences of ancient proteins and metabolisms in ancient 
organisms, and for obtaining new perspectives in structural biochemistry. 

A decade has passed since questions were 
raised (1) about the general validity of 
conclusions drawn from alignments of pro- 
tein sequences (2). Today, virtually every 
biochemical analysis.routinely begins with, 
contains, or concludes with an alignment of 
sequences of proteins that are presumed to 
be homologous (3). Alignments are also the 
starting point for methods of predicting de 
novo the secondary structure of proteins 
(4-6), for all knowledge-based structure 
predictions (7), for estimating the number 
of different types of protein folds (8),  for 
interpreting data from the human genome 
project (9), and for resolving phylogenetic 
issues (3, 10). 

Despite the varied applications of sequence 
alignments, it has proved difficult to construct 
sequence alignments correctly. This is not 
because of inadequate theory; an algorithm 
that achieves the optimal alignment of two 
homologous protein sequences was provided 
over 20 years ago by Needleman and Wunsch 
(1 1). Rather, the problem arises because there 
are simply too many sequence data to analyze 
and because the parameters needed to correct- 
ly score mutations, deletions, and insertions 
are unavailable. 

Today, mutations (mismatches) in an 
alienment are usuallv scored with a muta- " 

tion matrix developed by Dayhoff and her 
co-workers in the 1970s (12). However. this 
matrix was derived from alignments of an ex- 
tremely small set of proteins that are very sim- 
ilar in sequence, and is therefore unsuitable 
for alignments between two proteins whose 
sequences are sufficiently similar to suggest 
that they might be homologous, but not 
similar enough to make homology obvious. 

The difficulties in constructing align- 
ment routines are further complicated by 
the requirement that they handle deletions 
and insertions. Even random sequences can 
be aligned if gaps are introduced at no 

penalty. Most alignment programs there- 
fore assign penalties to gaps of the form (ak 
+ b), where k is the length of the gap and 
a and b are arbitrarily chosen constants. 
There is no justification, either theoretical 
or empirical, for this treatment. Indeed, 
many of the questionable conclusions 
drawn from alignments arise because of 
inappropriately placed gaps. Conversely, 
correctly placed gaps provide information 
that is critical to the de novo prediction of 
the folded structure of proteins from se- 
quence data alone (4-6). Such information 
led to the remarkably accurate predictions 
of the folded structures of tryptophan syn- 
thase and protein kinase before crystallo- 
graphic information was available (4-6). 

The amount of sequence data presently 
available should make it possible to do an 
exhaustive matching of the entire sequence 
database (defined here as the result of an 
attempted Needleman-Wunsch alignment 
of every subsequence in the database with 
every other subsequence), obtain empirical 
probabilities of mutations between amino 
acids, determine empirical gap scoring pen- 
alties, and use these to obtain high-quality 
alignments. This has not been done previ- 
ously because the Needleman-Wunsch al- 
gorithm is slow (about one pairwise com- 
parison per second). Because a typical con- 
temporary database (such as MIPS Version 
64) contains 8,344,353 (n) amino acids, 
exhaustive matching of all subsequences 
could involve some 35 x lo9 pairwise 

Fig. 1. Reorganization of sequences to form 
semi-infinite strings placed in "alphabetical or- 
der" (left to right in this diagram) on a patricia 
tree (13), idealized here for sequences built 
from just two letters. Reorganization time is 
almost linear with database size and requires 
negligible computation. Exhaustive matching is 
achieved by comearin~ patricia subtrees from 
the top. ~ i m e  is saved 6ecause the matching of 
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comparisons (on the order of nZ) and more 
than lo6 years of computer time. Not sur- 
prisingly, an exhaustive matching of a mod- 
ern sequence database with the Needle- 
man-Wunsch algorithm has been thought 
to be essentially impossible (1 3). 

We report the exhaustive matching of 
an entire protein sequence database. Nei- 
ther the Needleman-Wunsch algorithm nor 
any of the rigor that it implies was sacri- 
ficed. The key to matching in a reasonable 
time lies in the step preceding the applica- 
tion of the Needleman-Wunsch algorithm: 
a reorganization of the sequence data by 
indexing on a patricia tree (14) (Fig. I). In 
an indexed database, pairs of identical se- 
quences are found instantaneously because 
they lie together on the tree. Similar se- 
quences lie near each other in the tree. 
Thus, all pairs of sequences that might be 
significantly similar can be found in an 
indexed database by far fewer than n2 
matching operations and aligned with the 
Needleman-Wunsch algorithm. Thus. our " 

exhaustive matching required only 405 days 
of CPU time and was obtained in the 
background (otherwise idle CPU capabili- 
ty) from up to six workstations running in 
parallel for only 19 weeks. 

Classical mutation matrices and gap 
oenalties were used in the first ohase of the 
exhaustive matching. A liberal target score 
ensured that every match with potentially 
significant sequence similarity was exam- 
ined. The 6.5 x lo6 matched pairs of 
subseauences that were found in the first 
phase were then refined by running the 
Needleman-Wunsch algorithm from the 
point where each match began in one 
direction along the sequence alignment to 
the point where the alignment was opti- 
mized (or the sequences exhausted), run- 
ning the algorithm'in the reverse direction 
to achieve the same goal, and repeating the 
process until the alignment score was no 
longer improved. After refining, 1.7 x lo6 
matches remained, each optimally aligned, 
which were then used to calculate new 
mutation matrices and a model for scorine " 
gaps. These new scoring parameters were 
then used to further refine the matches to 
self-consistency. The parameters provide 

dexed, the fact that two similar protein sequences 
:nerality of the search. 
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S 0.1 2.2 
T -0.5 1.5 2.5 
P -3.1 0.4 0.1 7.6 
A 0.5 1.1 0.6 0.3 2.4 
G -2.0 0.4 -1.1 -1.6 0.5 6.6 
N  -1.8 0.9 0.5 -0.9 -0.3 0.4 3.8 
D -3.2 0.5 0.0 -0.7 -0.3 0.1 2.2 4.7 
E -3.0 0.2 -0.1 -0.5 0.0 -0.8 0.9 2.7 3.6 
P  -2.4 0.2 0.0 -0.2 -0.2 -1.0 0.7 0.9 1.7 2.7 
H  -1.3 -0.2 -0.3 -1.1 -0.8 -1.4 1.2 0.4 0.4 1.2 6.0 
R -2.2 -0.2 -0.2 -0.9 -0.6 -1.0 0.3 -0.3 0.4 1.5 0.6 4.7 
K  -2.8 0.1 0.1 -0.6 -0.4 -1.1 0.8 0.5 1.2 1.5 0.6 2.7 3.2 
H -0.9 -1.4 -0.6 -2.4 -0.7 -3.5 -2.2 -3.0 -2.0 -1.0 -1.3 -1.7 -1.4 4.3 
I  -1.1 -1.8 -0.6 -2.6 -0.8 -4.5 -2.8 -3.8 -2.7 -1.9 -2.2 -2.4 -2.1 2.5 4.0 
L  -1.5 -2.1 -1.3 -2.3 -1.2 -4.4 -3.0 -4.0 -2.8 -1.6 -1.9 -2.2 -2.1 2.8 2.8 4.0 
V 0.0 -1.0 0.0 -1.8 0.1 -3.3 -2.2 -2.9 -1.9 -1.5 -2.0 -2.0 -1.7 1.6 3.1 1.8 3.4 
F -0.8 -2.8 -2.2 -3.8 -2.3 -5.2 -3.1 -4.5 -3.9 -2.6 -0.1 -3.2 -3.3 1.6 1.0 2.0 0.1 7.0 
Y  -0.5 -1.9 -1.9 -3.1 -2.2 -4.0 -1.4 -2.8 -2.7 -1.7 2.2 -1.8 -2.1 -0.2 -0.7 0.0 -1.1 5.1 7.8 
1 -1.0 -3.3 -3.5 -5.0 -3.6 -4.0 -3.6 -5.2 -4.3 -2.7 -0.8 -1.6 -3.5 -1.0 -1.8 -0.7 -2.6 3.6 4.1 14.2 
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2. The recommended mutation matrix for initially aligning protein sequences. Subsequent 
refinements should use mutation matrices appropriate to the PAM distance of the protein pairs 
being aligned. The matrix is compiled for all pairs in the database separated by a PAM distance of 
between 6.4 to 100.0, extrapolated by exponential fitting to a PAM distance of 116.5. This approach 
minimizes perturbations that are due to the genetic code, imprecision in extrapolation, and errors in 
the database. Matrix elements are ten times the logarithm of the probability that the indices are 
aligned, divided by the probability that these indices would be aligned by chance, and are 
normalized for two proteins 250 PAM units apart to conform to standard practice. 

definitive answers to the two fundamental 
questions concerning protein alignment: 
What does a mutation cost? and What does 
a gap cost? 

First, mutation matrices (normalized to 
a distance of 250 PAM, where the PAM 
distance indicates the number of point ac- 
cepted mutations per 100 residues separat- 
ing two sequences) (12, 15, 16) were found 
to differ, depending on whether they were 
derived from protein pairs that are distantly 
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homologous or from protein pairs that are 
closely homologous. This discovery under- 
scores the insufficiency of the classical Day- 
hoff mutation matrix for constructing align- 
ments of distantly related proteins (12) and 
mandates the use of a new mutation matrix 
(Fig. 2) for the initial phase of all match- 
ines. " 

Second, an analysis of the gaps found in 
the 1.7 x lo6 matches produced by the 
exhaustive matching showed other interest- 
ing results. First, the probability of a gap 
occurring in an alignment of two sequences 
increases linearly with the PAM distance 
separating them. Further, the probability of 
a gap of length k decreases as approximately 
k-3'2 over the entire range of gap lengths 
examined (1 to 60 residues). This length 
distribution is inde~endent of the PAM 
distance, which shoks that gaps of different 
lengths at the same position in an align- 
ment are not generally created by consecu- 
tive insertion or deletion events. 

The following equation, where P is the 
probability of a gap of length k, most 
accurately fits the data (1 7): 

lolog (P) = -36.31 

+ 7.441og (PAM distance) - 14.931og (k) 

Fig. 3. Plots of some elements (cross terms) of 
mutation matrices as a function of the PAM 
distance, normalized to PAM 250. Matrix ele- 
ments relating amino acids that are similar 
chemically but different in their code increase 
with increasing PAM distance. Those relating 
amino acids that are different chemically but 
similar in code decrease with increasing PAM 
distance. The former are severely understated 
and the latter severely overstated in the classi- 
cal mutation matrix (12). Each point is derived 
from -250,000 aligned positions. Abbrevia- 
tions for the amino acid residues are: C, Cys; F, 
Phe; I, Ile; L, Leu; M, Met; R, Arg; V, Val; W, Trp; 
and Y, Tyr. 

Scoring gaps with the use of this or a related 
formula (1 7) allows more reliable alignment 
of distant sequences. This in turn allows a 
better evaluation of conclusions drawn from 
alignments of distantly related sequences 
(lying in the "twilight zone") (I), and the 
accurate multiple alignments and phyloge- 
nies produced by this integrated approach 
support accurate de novo predictions of the 
folded structure of proteins from sequence 
data (4. 5) .  . .  , 

The exhaustive matching also offers new 
perspectives in structural biochemistry. For 
example, the elements of mutation matrices 
relating amino acids that are similar in their 
chemical characteristics but different in 
their code were found generally to increase 
with increasing PAM distance, whereas 
matrix elements relating amino acids that 
are different in their chemical characteris- 
tics but similar in their code generally 
decrease with increasing PAM distance 
(Fig. 3) .  Thus, at low divergence, the 
structure of the code strongly influences not 
only the distribution of point mutations (a 
trivial conclusion) but also the distribution 
of accepted point mutations (a surprising 
conclusion). 

To understand why the probability of a 
gap of length k decreases with kF3", we 
begin by noting that accepted deletions or 
insertions must extract or insert polypeptide 
segments whose ends lie closely together in 
the folded structure. The probability that 
two ends of a randomly coiled polymer 
would lie together in space is inversely 
proportional to the mean volume occupied 
by the polymer; this mean volume increases 
with the length of the polymer raised to the 
312 power for randomly coiled polymers 
(18). Although effects arising from the 
excluded volume of a,real polypeptide chain 
increase this dimensionality (la), these hy- 
potheses can explain the experimentally 

Evolutionary distance (PAM units) 

Fig. 4. A plot of the total number of "connected 
components" in the MIPS Version 64 database 
as a function of the PAM distance of the con- 
nected component. The two curves show re- 
sults with a lower limit (similarity 290, solid line) 
and upper limit (similarity 2140, dashed line) 
used to estimate which matches are significant. 
The minimum match length is 50. 
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observed -312 power dependence of � rob- 
ability on gap length. 

The final outcome of the exhaustive 
matching is a reorganized database that can 
be rapidly searched using the DARWIN 
(Data Analysis and Retrieval With Indexed 
NucleotidePeptide Sequences) system 
(1 9). Each of the 1.7 x lo6 aligned pairs of 
subsequences that result from the exhaus- 
tive matching is characterized bv an evolu- 

c, 

tionary distance measured in PAM units. 
DARWIN, taking a PAM distance from 
the user, rapidly reconstructs the entire 
database in the form of sets of "connected 
components," entries joined by a match 
with every other entry in the component at 
or below the user-designated PAM. Because 
the PAM distances are accompanied by a 
statistical variance, evolutionary trees (20, 
21) constructed from these distances by 
DARWIN are rigorous; they are accompa- 
nied by a probability score for the most 
probable connectivity, probabilistic se- 
quences for the ancestral proteins at the 
nodes of the tree, and a multiple alignment. 

At very low PAM distances, the con- 
nected components include very similar 
sequences, multiple entries in the database, 
and entries that .differ only because of se- 
quencing or entry error. At increasing 
PAM distances, however, connected com- 
ponents grow to include families and super- 
families of proteins. Repetitive sequences 
are the only feature that significantly joins 
apparently nonhomologous entries into 
connected components. From the total 
number of connected components plotted 
as a function of PAM distance (Fig. 4), the 
number of different protein types in the 
database can be estimated. Even conserva- 
tive estimates indicate the existence of 
several thousand separate families of pro- 
teins (8). Finally, from these connected 
components, proteins and metabolisms can 
be reconstructed for various ancestors of 
modem organisms (10). Several of these 
reconstructed ancient proteins have now 
been prepared and studied in these labora- 
tories (22). 
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Total Chemical Synthesis of a D-Enzyme: 
The Enantiomers of HIV-1 Protease Show 

Demonstration of Reciprocal Chiral 
Substrate Specificity 

R. C. deL. Milton, S. C. F. Milton, S. B. H. Kent* 
The D and L forms of the enzyme HIV-1 protease have been prepared by total chemical 
synthesis. The two proteins had identical covalent structures. However, the folded protein- 
enzyme enantiomers showed reciprocal chiral specificity on peptide substrates. That is, 
each enzyme enantiomer cut only the corresponding substrate enantiomer. Reciprocal 
chiral specificity was also evident in the effect of enantiorneric inhibitors. These data imply 
that the folded forms of the chemically synthesized D- and L-enzyme molecules are mirror 
images of one another in all elements of the three-dimensional structure. Enantiorneric 
proteins are expected to display reciprocal chiral specificity in all aspects of their bio- 
chemical interactions. 

T h e  inherent chirality of "natural" organic 
compounds as products of physiological pro- 
cesses was first described by Pasteur (1, 2). 
The studies of Emil Fischer in the latter part 
of last century on the action of enzymes on 
chiral sugars led him to formulate his "lock 
and key" hypothesis as an explanation for 
the ability of the "asymmetrically con- 
structed agent from yeast cells" (that is, an 
enzyme) to discriminate enantiomeric 
forms of a sugar substrate (3). On the basis 
of such observations of stereochemical spec- 
ificity, Fischer believed that biological mac- 
romolecules (carbohydrates and proteins) 
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were composed exclusively of the D-sugars 
and the L-amino acids. It is now well 
established that the biosphere is inherently 
chiral, that each class of biological macro- 
molecules is made up of monomer mole- 
cules of uniform chirality (4), and that the 
biochemical interactions of biological mac- 
romolecules are inherently chiral. 

Enzymes, for example, invariably act 
only on one enantiomer of a chiral sub- 
strate, or generate only one diastereomer 
from a prochiral substrate (5). This speci- 
ficity can be related to the chiral structure 
of the enzyme molecule, including the 
three-dimensional folding of the polypep- 
tide backbone and the orientation of the 
amino acid (aa) side chains in the folded 
protein molecule (3, 5, 6). To date only 
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