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Heteromeric NMDA Receptors: Molecular and
Functional Distinction of Subtypes

Hannah Monyer, Rolf Sprengel, Ralf Schoepfer, Anne Herb,
Miyoko Higuchi, Hilda Lomeli, Nail Burnashev, Bert Sakmann,
Peter H. Seeburg*

The N-methyl p-aspartate (NMDA) receptor subtype of glutamate-gated ion channels
possesses high calcium permeability and unique voltage-dependent sensitivity to mag-
nesium and is modulated by glycine. Molecular cloning identified three complementary
DNA species of rat brain, encoding NMDA receptor subunits NMDAR2A (NR2A), NR2B,
and NR2C, which are 55 to 70% identical in sequence. These are structurally related, with
less than 20% sequence identity, to other excitatory amino acid receptor subunits, including
the NMDA receptor subunit NMDAR1 (NR1). Upon expression in cultured cells, the new
subunits yielded prominent, typical glutamate- and NMDA-activated currents only when
they were in heteromeric configurations with NR1. NR1-NR2A and NR1-NR2C channels
differed in gating behavior and magnesium sensitivity. Such heteromeric NMDA receptor
subtypes may exist in neurons, since NR1 messenger RNA is synthesized throughout the
mature rat brain, while NR2 messenger RNA show a differential distribution.

The excitatory neurotransmitter glutamate
can evoke Ca’* influx in neurons of the
central nervous system (CNS). This Ca?*
influx is critical for activity-dependent syn-
aptic plasticity (I) and, if excessive, can
lead to neuronal death (2). Glutamate-
activated Ca®* currents are mediated by the
NMDA receptor, a subtype of ionotropic
excitatory amino acid (EAA) receptors
with distinct pharmacological (3) and elec-
trophysiological (4-7) features. A key step
in characterizing the molecular makeup of
this receptor has been achieved (8) by the
expression cloning of one of its subunits,
NMDARI1 (NR1). This study demonstrat-
ed that characteristic NMDA receptor
properties can reside in homo-oligomeric
structures. However, the current ampli-
tudes obtained with NR1 in the Xenopus
oocyte expression system were low (8), a
result that predicts that natural NMDA
receptors occur in hetero-oligomeric config-
urations, like other ligand-gated ion chan-
nels (9).

The primary structure of NR1 (8) re-
vealed a family relation to the previously
characterized ionotropic EAA receptor sub-
units (10, 11), with which NR1 shares
several small sequence islands, particularly
in regions around putative transmembrane
(TM) segments. By polymerase chain reac-
tion (PCR) amplification of rat brain
cDNA with oligonucleotides constructed to
detect such conserved sequences (12), we
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found three cDNAs encoding new glutamate
receptor subunits, termed NMDARZA
(NR2A), NR2B, and NR2C (Fig. 1). The
predicted proteins are between 55% (NRZA
and NR2C) and 70% (NRZA and NR2B)
identical but are only about 20% identical to
homologous subunits (10, 11), including
NR1 (8).

The new subunits, and NR1, carry an
asparagine residue in the putative channel
forming region TMII, whereas a glutamine or
arginine residue resides in the homologous
position of the a-amino-3-hydroxy-5-methyl-
4-isoxazole propionic acid (AMPA)-selective
glutamate receptor subunits (10). The ex-
change by site-directed mutagenesis of either
of the latter amino acids for asparagine gen-
erates channels characterized by high Ca?*/
Cs* and Ca?*/Mg?* permeability ratios and
by near linear current-voltage (I-V) relations
(13). Thus, this particular asparagine residue
may constitute a distinctive functional deter-
minant in subunits belonging to the NMDA
receptor.

When compared to other subunits of the
ionotropic glutamate receptor family, two
of the three new subunits, NR2ZA and
NR2B, are uniquely endowed with COOH-
terminal extensions of greater than 600
residues that contain scattered regions of
conserved sequence between the two forms
(Fig. 1). The size of these COOH-termini is
larger than the extracellular NH,-terminal
segment preceding the first TM region.
This finding may cast doubt on the current-
ly postulated topology for ionotropic EAA
receptors (10, 11), which predicts an extra-
cellular location for sequences distal to the
last membrane-spanning region but has not
been experimentally verified. If actually
located inside the cell, the COOH-termi-
nal sequences, particularly those of NRZA
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and NR2B, might provide additional target
sites for cellular constituents (14, 15) reg-
ulating channel function, location, and
assembly.

When visualized by in situ hybridization
(16), the three NR2 mRNAs exhibit over-
lapping, differential expression patterns in
the rat brain (Fig. 2). In contrast with the
almost ubiquitous and prominent expres-

sion of NR1 (8), the new subunits are more
restricted in their expression. The distribu-
tion of NRZA mRNA bears the closest
resemblance to that of NR1 and is present
both in forebrain and in the cerebellum.
The other two transcripts, NR2B and
NR2C, have a more complementary distri-
bution. NR2B is expressed in the forebrain,
and NR2C shows the highest levels in the
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Fig. 1. Comparison of polypeptide sequences encoded by a family of three NMDA receptor subunit
cDNAs (23). Sequences were derived as in (72) and are numbered on the left in the order of NR2A,
NR2B, and NR2C. Positive numbers start with the predicted mature NH,-termini. An additional line
(Con) lists amino acids conserved in all three subunits and continues to show conserved residues
between NR2A and NR2B in their extended COOH-termini. In these latter sequences, a conserved
sequence motif (RX, ;CX,CX,Y) distantly related to a zinc finger element (24) is indicated by boxed
amino acids. Consensus N-linked glycosylation sites in regions preceding TMI are underlined, and
putative transmembrane regions TMI to TMIV are boxed. A filled circle highlights the asparagine
residue postulated to be a functional determinant of NMDA receptors. Stretches of three or more
consecutive amino acids conserved between NMDAR1 (9) and the three NR2 subunits are

underlined in bold.
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cerebellum where no NR2B mRNA is de-
tected. All three NR2 transcripts are ex-
pressed in the thalamic nuclei, although
there is less NRZA mRNA. The hypothal-
amus contains only the NRI1 transcript,
suggesting the existence of additional
NMDA receptor subunits. The amygdaloid
nuclei express mRNAs encoding NRZA
and NR2B but not NR2C. In the caudate-
putamen, there is no NR2C mRNA, but
moderate signals are detected with the
NR2A and NR2B probes. Differences in
regional expression patterns are also appar-
ent in the olfactory bulb. Whereas the NR1
and NR2A mRNAs appear to be expressed
in most cell types (granule cells, mitral
cells, tufted cells), the NR2B and NR2C
mRNAs show a restricted distribution.
NR2B-specific mRNA is expressed mainly
in granule cells and NR2C mRNA in tufted
and mitral cells.

The Xenopus oocyte system was em-

ployed (17) to study the functional proper-

ties of NR2 subunit expression. No detect-
able currents were recorded after bath ap-
plication of glutamate or NMDA to oocytes
expressing one or two NR2 subunits, indi-
cating that NR2 subunits may not form
functional homomeric or heteromeric chan-
nels. However, large currents were measured
in oocytes coexpressing NR1 and any one of
the newly identified subunits. The coexpres-
sion of NR1 and NR2A leads to NMDA
(100 uM)-activated currents, which when
measured during the current plateau ranged
from 680 to 3000 nA (n = 5). The NMDA-
induced currents in oocytes expressing NR1
and NR2B or NR1 and NR2C subunits were
smaller, ranging from 120 to 290 nA (n =
8). On average, current amplitudes were 100
times larger than they were in oocytes ex-
pressing homomeric NR1 channels, indicat-
ing that heteromeric configurations are like-
ly to form from NR1 subunits and members
of the NR2 subunit family. Consistent with
the notion of heteromultimer formation is
the observation that responses of cultured
293 cells to 100 pM NMDA were observed
only upon cotransfection with vectors for
the NR1 and either NR2A or NR2C sub-
units (18).

Native NMDA receptors are distin-
guished from other transmitter-gated, cati-
onic channels by their voltage-dependent
block by extracellular Mg?* (5), their high
Ca**/Na* permeability ratio (4), and by
gating kinetics that are characterized by
slow onset and offset time courses to pulses
of high concentrations of agonist (19).
These functional properties were measured
for heteromeric NRI-NR2A and NRI-
NR2C receptor channels, transiently ex-
pressed in 293 cells (18). Figure 3A illus-
trates whole-cell currents mediated by the
NR1-NR2A channel in response to appli-
cation of 100 uM NMDA at —60 mV in



Fig. 2. Regional distribution of
NMDA receptor mRNAs in
horizontal and coronal sec-
tions of the rat brain. A,
amygdaloid nuclei; Cb, cere-
bellum; CP, caudate putamen;
Cx, cortex; H, hippocampus;
Hy, hypothalamic area; IC, in-
ferior colliculi; OB, olfactory
bulb; S, septal nuclei; T, tha-
lamic nuclei. Scale bar, 16
mm.

Fig. 3. Conductance and ion permeability properties of
recombinant NMDA receptor channels expressed in
293 cells after transfection with NR1 and either NR2A-
or NR2C-subunit-specific vectors. All experiments
were performed in the presence of 10 uM glycine in the
extracellular solution. (A and B) Effect of extracellular
Mg2* on NMDA-activated whole-cell currents in cells
expressing two NMDA receptor channel subtypes. The
current responses of a cell expressing NR1-NR2A
channels (A) and NR1-NR2C channels (B), respective-
ly, were measured in the absence and in the presence
of 0.5 mM extracellular Mg2*+ at' —60 mV membrane
potential. (C and D) Voltage and concentration depen-
dence of block by extracellular Mg2* on glutamate (100
pM)-activated steady-state /-V relations in cells ex-
pressing two different subunit combinations, NR1-
NR2A (C) and NR1-NR2C (D), respectively. The three
traces in each graph represent steady-state whole-cell
I-V relations measured during voltage ramps, in the
absence of extracellular Mg2* and in the presence of
0.1 mM and 0.5 mM Mg?*. (E and F) High divalent
permeability of recombinant NMDA receptor subtypes.
Shift to positive reversal potentials of glutamate (E)— or
NMDA (F)-activated whole-cell current when the extra-
cellular solution is changed from high Na+ (Mg 2+-free
rat Ringer) to high Ca2+ extracellular solution. In both
NMDA receptor subtypes, the reversal potential shifts
from a control value close to 0 mV to a positive
membrane potential: 21.8 mV for the NR1-NR2A sub-
type and 19.5 mV for the NR1-NR2C subtype as indi-
cated by the arrows. The average values of shifts in
reversal potentials were 22.5 + 1 mV (n = 3) for cells
expressing NR1-NR2A channels and 19.0 = 0.4 mV (n
= 5) for cells with NR1-NR2C channels.
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A NR1-NR2A

100 uM L-glutamate

C NR1-NR2A

10 uM glycine

]

B NR1-NR2C

100 uM L-glutamate

D NR1-NR2C

10 uM glycine

G L

Fig. 4. (A and B) Slow onset and offset time course of glutamate (100 wM)-activated whole-cell
currents in transfected 293 cells. Cells were exposed to control solution containing 10 wM glycine,
followed by a 300-ms pulse of a solution containing both 10 uM glycine and 100 uM glutamate. The
20 to 80% rise times of the response were very similar for the two receptor subtypes [12.1 £ 2.5 ms
(n = 4) for NR1-NR2A channels; 13.8 = 0.8 ms (n-= 3) for NR1-NR2C channels]. The offset time
constants differed considerably between the two subtypes and were 118 + 11 ms (n = 4) for
NR1-NR2A (A) and 382 + 45 ms (n = 3) for NR1-NR2C (B). The offset decay time constants after
coapplication of 100 kM NMDA and 10 uM glycine (not shown) were 30.9 = 2.2 ms (n = 5) for
NR1-NR2A and 50.8 + 13 (n = 4) for NR1-NR2C. These values compare to 84 + 9 ms (n = 5) and
319 + 36 ms (n = 4) for the two receptor subtypes when measured during coapplication of 100 pM
glutamate and 10 uM glycine. (C and D) Effect of glycine on glutamate-activated whole-cell
currents. Cells were first exposed to 100 uM glutamate in the nominal absence of glycine and no
current response was detected. A 300-ms pulse of 10 uM glycine elicited a current response with
subtype-specific offset decay time constants [147 + 15 ms (n = 3), NR1-NR2A; 683 = 93 ms (n =
4), NR1-NR2C]. However, the 20 to 80% rise times were comparable NR1-NR2A; NR1-NR2C. Offset
decay constants were obtained by fitting single exponential functions to digitized records [33 + 2

ms (n = 3)/32 + 1 ms (n = 4)]. Membrane potential, —60 mV.

nominally Mg?*-free rat Ringer solution
and after addition of 0.5 mM Mg?*. The
response consists of a rapid rise to a steady-
state current, which is turned off quickly
after removal of agonist. In the presence of
Mg?*, the response amplitude is reduced to
about 20% of the control value. The block
of the response is concentration and voltage
dependent. The steady-state I-V relation
(Fig. 3C) illustrates the effect of extracellu-
lar Mg?* on inward currents. In the ab-
sence of Mg?*, the I-V relation is almost
linear but is J-shaped in the presence of
submillimolar concentrations of Mg?*, as
described for native NMDA receptor chan-
nels (5). The strength of this block depends
on the particular subunit combination,
since for the channel assembled from NR1
and NR2C subunits the blocking action of
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Mg?* is considerably weaker (Fig. 3, B and
D). This result indicates that NMDA re-
ceptor subtypes may differ in their sensitiv-
ity to Mg?*, and hence, as seen with other
transmitter-gated channels (9), functional
diversity of native NMDA receptors may be
expected from assembly of different subunit
combinations. Figure 3, E and F, illustrates
the high Ca?*/Cs* permeability ratio of
heteromeric NMDA receptor channels, a
functional property that is shared among
the subtypes. The reversal potential for the
glutamate-activated whole-cell current
shifted from close to 0 mV in normal, high
‘Na* extracellular solution to around 20 mV
in high (110 mM) Ca2* extracellular solu-
tion in cells expressing the NR1-NR2A or
the NR1-NR2C receptor subtypes. The re-
versal potentials in high Ca?* extracellular
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solution are close to those seen in these
conditions in native NMDA receptor chan-
nels (20) and are identical to those deter-
mined for homomeric AMPA-selective glu-
tamate receptor channels engineered to car-
1y an asparagine in the putative TMII seg-
ment (13).

Another hallmark of native NMDA re-
ceptor channels is the relatively slow onset
and offset time course of the current re-
sponse after application of short pulses of
high glutamate concentrations (19). Figure
4 illustrates whole-cell current responses of
cells expressing heteromeric NMDA recep-
tor channels to brief application (300 ms)
of 100 pM glutamate, a saturating concen-
tration, in the presence of 10 uM glycine.
The rise time course of the current is
relatively slow when compared, for exam-
ple, to the rise time course of currents
recorded under the same conditions from
AMPA-selective GluR channels and is
comparable to that of currents mediated by
NMDA receptors in native membranes
(19). The decay time constant of the offset
current after the glumamate pulse is also
slow. It depends on the applied agonist,
since the offset decay after application of
NMDA at saturation concentration (100
pM) is considerably faster (legend to Fig.
4), as also seen in native NMDA receptors
(19). The offset decay depends on the
subunit composition and is considerably
faster in cells expressing NR1-NR2A chan-
nels (Fig. 4A) than in cells expressing
NRI1-NR2C channels (Fig. 4B). Both the
slow onset and slow offset of NMDA recep-
tor—mediated currents in native membranes
(19) are comparable to the slow gating
behavior of recombinant NMDA channels
and thus reflect properties of the NMDA
receptors that depend on their molecular
composition. The effect of glycine on cells
expressing the two receptor subtypes was
also different (Fig. 4, C and D). Applica-
tion of 100 pM glutamate in the nominal
absence of glycine did not activate detect-
able currents, as in native NMDA receptors
(19). A brief addition of 10 pM glycine
increased the currents as long as glycine was
present. After removal of glycine, NR1-
NR2A- and NR1-NR2C-specific currents
decayed with very different offset time
courses.

The existence in brain of pharmacolog-
ically different NMDA receptor subtypes
has been reported (21, 22). Our results
provide molecular, anatomical, and func-
tional evidence for subtypes generated by
heteromeric assembly of the NR1 subunit
with different members of the NR2 subunit
family. These NMDA receptor subtypes
with their distinct physiological properties
may subserve the induction of activity-
dependent synaptic plasticity in a cell-spe-
cific manner.
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