
ammonium (TEA) suggests that these 
agents occupy structurally homologous 
binding sites close to or within the mouth 
of the channel pore (20). Guy and Conti 
(27) and Hille (20) suggested an alignment 
of amino acid sequences where the G ~ u ~ ~ ~  
involved in TTX and STX binding in Na+ 
channels is one to two positions away from 
the critical residue at position 449 in K+ 
channels, a major site in charybdotoxin and 
TEA binding. Our results with the Cys374 
+ Tyr and the Arg377 -+ Asn mutants 
demonstrate that residues 374 to 377 are 
essential for binding of TTX and STX and 
Cd2+, which would align with residues 444 
to 447 of the Shaker K+ channel (20, 27). 
This would place the TTX and STX recep- 
tor about three-eighths to three-quarters of 
the way into the pore, which is inconsistent 
with the observed lack of voltage depen- 
dence for TTX and STX binding. Identifi- 
cation of the residue at position 374 as 
critical to high-affinity toxin binding re- 
veals the structural difference that distin- 
guishes TTX-R and TTX-S Na+ channel 
isoforms and explains the high-affinity di- 
valent cation blockage of the RHI and the 
competition of divalent ions and toxin for 
binding. The position of this residue may 
require revision of the Na+ channel pore 
structure suggested by homology with the 
K+ channel. 

Note added in proof Cys374 + Phe has 
the same properties as Cys374 -+ Tyr. 
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Identification of Hereg ulin, a Specific Activator 
of p185 erbB2 

William E. Holmes,* Mark X. Sliwkowski, Robert W. Akita, 
William J. Henzel, James Lee, John W. Park, Daniel Yansura, 

Nasrin Abadi, Helga Raab, Gail D. Lewis, H. Michael Shepard,? 
Wun-Jing Kuang, William I. Wood, David V. Goeddel, 

Richard L. Vandlen*$ 
The proto-oncogene designated erbB2 or HER2 encodes a 185-kilodalton transmembrane 
tyrosine kinase (pi 85erbe2), whose overexpression has been correlated with a poor prog- 
nosis in several human malignancies. A 45-kilodalton protein heregulin-a (HRG-a) that 
specifically induced phosphorylation of p i  85erbB2 was purified from the conditioned me- 
dium of a human breast tumor cell line. Several complementary DNA clones encoding 
related HRGs were identified, all of which are similar to proteins in the epidermal growth 
factor family. Scatchard analysis of the binding of recombinant HRG to a breast tumor cell 
line expressing p i  85erbB2 showed a single high affinity binding site [dissociation constant 
(K,) = 105 & 15 picomolar]. Heregulin transcripts were identified in several normal tissues 
and cancer cell lines. The HRGs may represent the natural ligands for p185erbB2. 

T h e  p185erbB2 protein is a 185-kD trans- cies (4). In particular, overexpression of 
membrane tyrosine kinase encoded by the p185erbB2 correlates with a poor prognosis in 
erbB2 proto-oncogene (1) that is similar to breast, ovarian, gastric, and endometrial 
the epidermal growth factor (EGF) receptor cancers and non-small cell lung adenocar- 
(2) and the HEW, or c-erbB3, protein (3). cinoma (5). EGF and transforming growth 
Both p185eTbB2 and the EGF receptor are factor* (TGF-a), which are ligands for 
associated with certain human malignan- the EGF receptor, clearly promote cell 

growth and transformation (1, 6). Howev- - 
Departments of Protein Chemistry, Molecular Biology er, a dependence On a ligand for 
and Cell Bioloqy, Genentech, Inc., South San Fran- growth or transformation in cells expressing 
cisco, CA 94080. p185erbB2 has not been established. Neither 
*W. E. Holmes and R. L. Vandlen are equal contribu- EGF nor TGF-a binds to or activates 
tors to this work. 
?Present address: Canji Pharmaceuticals, San Diego, 

p185erbB2 (7). 
CA ~ 7 1 7 1  Evidence that p185eTbB2 may respond to -. . - - , - . . 
*To whom correspondence should be addressed. exogenous ligands includes observations 
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that some monoclonal antibodies to  the crease i t s  tyrosine kinase activity and affect 
extracellular domain o f  p185"bBZ can in- cell proliferation (8). There have been 

Fig. 1. Purification of heregulin from A C 1 2 3  
conditioned medium of MDA-MB- 
231 (ATCC # HTB 26) cells (12). - -7 

(A) Elution of proteins (absorbance k~ - 
at 21 4 nm) from C4 reversed-phase 2 
high-performance liquid chroma- 2 
tography (HPLC) column. (B) Frac- 97- 

tions from the HPLC column were 66 - 
assayed for the stimulation of tyro- 43- 
sine phosphorylation in ~ 1 8 5 ~ ' ~ ~  
Protein immunoblots blots were 31- 

quantitated by densitometry (12) 22- 
and the results are presented in $,m 14- , 
arbitrary units. (C) SDS-polyacryl- 30 
amide gel electrophoresis (SDS- 4 
PAGE) of fractions from the HPLC 
column. Proteins were visualized I 0  

by silver staining. Lane 1, molecu- 
lar size standards; lane 2, fraction 10 20 30 40 50 

Minutes 
16 (10 PI); lane 3, fraction 17 (10 
PI). The fraction with peak activity (fraction 17) contained primarily a single protein of -45 kD, which 
was subjected to sequencing (13). The other peaks of activity contain other proteins and may be 
due to resolution glycosylated isoforms of HRG. 

several reports of partially purified activities 
that affect p185erbBZ function. Two reports 
described an activity wi th a molecular size 
o f  30 to 35 kD activating both the EGF 
receptor and p185erbBZ (9, 10); a third 
reported that a smaller protein (8 to 24 kD) 
activated p185c-Mu (the rat homolog of 
p185"bBZ) but not  the EGF receptor ( I  I ) .  
In contrast, we have purified and character- 
ized a 45-kD protein, heregulin-a (HRG- 
a), that specifically activates tyrosine phos- 
phorylation o f  p185"bBZ. 

HRG-ol was detected in conditioned 
medium of  MDA-MB-23 1 human breast 
carcinoma cells as a factor that stimulated 
the tyrosine kinase activity o f  p185"bBZ in 
MCF-7 breast tumor cells (1 2) (Fig. 1). We  
purified the 45-kD protein by chromatogra- 
phy o n  heparin Sepharose and cation ex- 
change columns and by reversed-phase 
chromatography. Amino acid sequence 
data derived from proteolytic digestion 
products (1 3) enabled the design o f  a deoxy- 
oligonucleotide probe that was used to 

A = Fig. 2. Amino acid sequence of the heregulins and their relation to EGF family members. (A) 
g 2 HRG cDNAs. Hydropathy profile indicating the position of a hydrophobic domain at positions 

8 0 243 to 265 (top). The coding area is boxed and cysteines are indicated (bottom). Hatching, 
'a 
% -2 six-cysteine EGF-like structural unit; filled box, hydrophobic segment. (1) six potential aspar- 
I agine-linked glycosylation sites (29); small filled box, area for possible Olinked glycosylation 

(30). The lengths and positions of clones 13, proHRGa, proHRG-p1, proHRG-p2, and 
proHRG-p3 are shown with p o w )  tails designated ((4. The dashed line of proHRG-p3 is a 
non-homologous 3' untranslated sequence. (B) Amino acid sequences of the proHRGs. 

Amino acids 0 200 400 600 
I , I I I I I  Amino acid sequence and alignment of three proHRG forms relative to proHRGa. Amino acid 

I I I I I I 

bp 4 0 0  0 400 800 1200 1600 2000 numbers, indicated on the left, are based on proHRGa. Shaded area, amino acids within the 
divergent region of the HRGs that occur in at least two forms; asterisks, COOH-terminal amino 

13 - acids; overline, the 23-amino acid hydrophobic region; double dots, possible sites of 
(HRG-a) glycosaminoglycan addition (31); triple dots, possible sites of Nlinked glycosylation; double 
(HRG-PI) A,, overline, area for possible Olinked glycosylation; underline, a potential nuclear targeting 

(HRG-B2) 3 
signal; triangles, two sites of single amino acid substitutions. Gln 38 is replaced by Arg in 

(HRG-W) . . . . . . . . . 
5 

proHRG-p1, -p2, and -83 and Met is replaced by Lys in proHRG-p2 at position 463. (C) 
Alignment of HRGs with human EGF family members. Shown are the EGF-like structural units 
of the indicated molecules. HRG sequences begin with amino acid 175 of the proforms; other 
proteins are numbered relative to amino acid 1 of their mature forms. Amino acids strictly con- 

B served are shaded. 
m a  1 M ~ ~ ( ; R G K G K ~ G ~ & E S M G S Q S P A L P P ~ ~ ~ S M G S K L V L R C E T S S E Y S S ~ G  Dashes, gaps in the .. ... ... sequence inserted for 
HRGa 75 NELNRKNRPQNIKI~GKSELRI~LADSGE~ISKLGND~ASANITIVESNEII~;~ASTEWLW~SE~PIRISVST~SSSTSTSTT besf alignment; over- 

- 
HRG-a 175 (~TSHLVKCAEKER~~CVNGGECFMVKDLSNPSRYLCK EK-----AEELY~TITGICIWWGIMCVVA~~ lines, known or puta- 
HRGf3l LGIEFME tive hydrophobic do- 
HRG$P mains; arrows, posi- 
HRG$~ STPFLSLPE* tions of proposed 

m a  270 QRICRLRD~QS~IANGPBHP~PPENVQL~QWSKNVISSEHIVEREAETSFSTSHYTSTAHHSTTVTQTPSHS~SNGHTESIISESHS (P~oHRG) or known ... A (others) COOH-termi- 
HRG-a 370 VIVMSSVENSRHSSPTGGPR~C3TGGPRECNS~TPDSYRDSPASERW~ARMSPVDFHTPSSPKSPPSEMsPPVSS~S~SMAVS rial processing; aster- 

C 
-a 

mop1 
HRDp2 

m o p 3  

EGF 

TGF-a 
AR 

HB-EGF 
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screen a AgtlO c D N A  library constructed clone (Fig. 2A) encodes a reading frame 645, 637, and 231 amino acids, which we 
with mRNA from the MDA-ME231  cells that is open at both the 5' and 3' ends. have termed proHRG-a, proHRG-$1, pro- 
(14). One hybridizing clone, which ap- Related coding sequences were discovered HRG-$2, and proHRG-$3, respectively. 
peared to  encode a precursor o f  HRG-a in other AgtlO libraries from MDA-ME231  The initiating methionine was assigned o n  
(proHRG-a), was isolated and sequenced cells (14) as cDNAs that encode the NH,- the basis o f  an in-frame stop codon 444 
(GenBank accession numbers M94165, and COOH-tennini o f  proHRG-a (Fig. bases upstream. Because a termination sig- 
M94166, M94167, and M94168). This 2A). The cDNAs encode proteins o f  640, nal  (TAA) exists at identical positions in 

both proHRG-$1 and proHRG-$2 cDNAs, 

Fig. 3. Hybridization stud- A M s B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
ies of human cell line and 
tissue mRNAs. A radiola- 

v 
6.6 kb- 

---w=- 
i 

beled DNA fragment in- 6 6 w. l)-r 

Ligand concentration (nM) 

C 

HRG 

2.5 kb- ,? 

1.8 kb- I) 

cluding ~ ~ O H R G ~  nucleo- 
tides -90 through +610 
(Fig. 2A) was hybridized 2.5 kb. 
with polyadenylated mRNA 
(5 pg) from the sources 1.8 w. 
indicated below. The RNAs 
were first separated ac- 
cording to size by electro- 
phoresis and transferred to 
nitrocellulose. (A) Human 
cell line mRNAs. M, MDA- 
MB-231; S, SK-BR-3 (ATCC # HTB 30). (B) Various human tissue mRNAs. Lanes 1 through 17 are 
breast, uterus, prostate, stomach, heart, brain, placenta, lung, liver, kidney, skeletal muscle, 
pancreas, ovary, testis, saliiaty gland, small intestine, and spleen, respectively. 

a stop was assigned at a corresponding site 
in the sequence o f  proHRG-a. The four 
HRGs are distinguished by a variable region 
o f  19 to  29 amino acids beginning at posi- 
t ion 212 (Fig. 2B). The predicted amino 
acid sequences o f  proHRG-$ 1, proHRG- 
$2, and proHRG-$3 diverge from that o f  
proHRG-a at this point and for the next 18 
residues (through position 230) they share a 
common sequence before diverging further 
and losing similarity to  one another. After 
residue 230, proHRG-$1 continues for nine 
more amino acids and proHRG-$2 contin- 
ues for a single amino acid before both 
resume identity with proHRG-a at pro- 
HRG-a position 235. The proHRG-$3 
c D N A  encodes 1 1 residues beyond position 

D 

HRG 

500 . 

HRG - - + 

EGF - - + - 

Fig. 4. Specificity of interaction of HRGs with ~ 1 8 5 ~ ~ .  (A) 
Scatchard analysis of lZ51-labeled HRG-p1 177-24, binding to 200 - 
MCF-7 cells. Escherichia coli-expressed, truncated rHRG- 
p1177-241 (24) was labeled with 1251-Bolton-Hunter reagent 
(ICN) (32) and purified by reversed-phase HPLC (specific 
activity, 150 ~Ci lpg) .  MCF-7 cells (ATCC # HTB 22) were 
incubated in medium with various concentrations of unlabeled 
rHRG-p1,77,4, and a constant amount of 1251-labeled rHRG- 97 - 

116 - 
p1 177-241 for 16 hours at 4°C. Unbound ligand was removed. 116 - 

and cells were washed with ice-cold medium. The amount of 
radioactivity bound was determined after solubilizing the cells 68 - 97 - 
with 0.1 N NaOH containing SDS (0.1%). Binding data were 97 - 
analyzed using a nonlinear regression program (33). (8) 1 2 3 4 5  1 2 3  

Competitive inhibition of binding of 1251-labeled EGF to A431 
cells ( A m  # CRL 1555). Cells were incubated with various concentrations of EGF (squares) or rHRG-p117,2,1 (circles) as described above but with 
lZ51-labeled EGF (specific activity, 200 ~Ci lpg).  (C) Cross-linking of 1251-labeled rHRG-p1,77~241 to cell lines expressing ~ 1 8 5 ~ ~ .  SK-BR-3, 
MDA-MB-453 (ATCC # HTB 131), or MCF-7 cells (2.0 x 106) were suspended in Hank's balanced salts (Gibco-BRL) and incubated with 1251-labeled 
rHRG-pl,,.,, (lo6 cpm) in the absence (-) or presence (+) of unlabeled rHRG-pl,,,,, (100 nM) for 30 min at 22°C. Bis(sulfosuccinimidyI) suberate 
(Pierce) was added to the cell suspensions (final concentration, 1 mM) and the incubations were continued for 30 min. The cells were washed with 
tris-buffered saline (TBS) and dissolved in SDS sample buffer. Samples were run on a polyacrylamide gel (7%) and bands were visualized by 
autoradiography. Molecular size standards are in kilodaltons. (0) Cross-linking of lZ5l-labeled rHRG-p1 177-241 to MDA-MB-453 cells and immunopre- 
cipitation of the complex with antiserum to p1 85em2. 1251-labeled rHRG-pl ,7,-z41 was cross-linked to MDA-MB-453 cells as described in (C) except that 
after the TBS wash, the cells were lysed in TBS containing Triton X-100 (0.5%). lmmunoprecipitations (IP) were performed on portions of each lysate 
with either the guinea pig antiserum to the extracellular domain of ~ 1 8 5 ~ ~  or normal guinea pig serum as a control. Samples were prepared in SDS 
sample buffer, run on a polyacrylamide gel (5.5%), and visualized by autoradiography. Lane 1, cell lysate in the absence (-) of unlabeled HRG; lane 
2, cell lysate in the presence (+) of HRG (100 nM); lane 3, same as lane 1 but immunoprecipitated with a n t i - ~ 1 8 5 ~ ~ ~ ;  lane 4, same as lane 1 but with 
normal goat serum; lane 5, same as lane 2 but immunoprecipitated with a n t i - ~ l 8 5 ~ ~ ~ .  (E) Cross-linking of 1251-labeled EGF to MDA-MB-468 cells 
(ATCC # HTB 132). Cells were suspended in Hank's balanced salts and incubated with 1251-labeled EGF (Amersharn). Lane 1. cell lysate in the absence 
(-) of unlabeled EGF; lane 2, cell lysate in the presence (+) of EGF (100 nM); and lane 3, cell lysate in the presence (+) of 100 nM rHRG-p1,77,41. 
Cross-linking was performed as described in (C). The cells were dissolved in SDS sample buffer and run on a polyacrylamide gel (5.5%). Bands were 
visualized by autoradiography. 
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Ligand concentration (pM) 

200 

180 

3 160 - 
6 140 - - 
; 120 = 
2 loo 
a 
= 80 
l? 

60 

40 
10.' id lo' id lo3 id loS 

Ugand concentration (pM) 

1 2 3 4 5 6 7 8  

Flg. 5. Specificity and mitogenic activity of heregulins. (A) lmmunoprecipitation of p185- after stimulation of MDA-ME453 cells. Cells (2.0 x 108) 
were suspended in 50 mM Hepes (pH 7.4) buffer containing 150 mM NaCI, 2 mM MgCI,, 1 mM MnCI,, and 1 mM EGTA and incubated in the presence 
(+) or absence (-) of rHRG-p1 (4.0 nM) (24) for 15 min at 22°C. Cells were lysed in the same buffer containing Triton X-100 (1.0%), 200 p.M N%VO,, 
and 10 mM EDTA. The p185- was immunoprecipitated with guinea pig antiserum to the extracellular domain of ~ 1 8 5 ~ .  Blots were probed with 
antiserum (aHER2) to a synthetic peptide corresponding to a COOH-terminal region of p185(lbB2 (34) or with a monoclonal antibody to phosphotyrosine 
(12). Bands at the bottom of the gel are due to the reaction of secondary antibodies with the antibodies used in the immunoprecipitation. (8) Stimulation 
of tyrosine phosphorylation in MDA-MB-468 and MCF-7 cells. Cells were treated with various concentrations of EGF, rHRGa, or rHRG-p1 and the 
increase in tyrosine phosphorylation of the EGF receptor (p170) and p185- was quantitated. Lanes 1 to 4, MDA-MB-468 cells; lanes 5 to 8, MCF-7 
cells. Lane 1, human recombinant EGF (1 nM) (Upstate Biotechnology); lane 2, RlRGa (10 nM); lane 3, rHRG-131 (10 nM); lane 4, no ligand; lane 5, 
EGF (10 nM); lane 6, rHRG-a (1 nM); lane 7, rHRG-p1 (1 nM); and lane 8, no ligand. (C) Stimulation of tyrosine phosphorylation by rHRG-u and rHRG-p1 . 
MCF-7 cells were incubated with various concentrations of rHRGs, and the increase in tyrosine phosphorylation of p185- quamtitated as described 
(12). The data were fit to a four-parameter nonlinear least squares equation. EC,'s for both r H R G a  and rHRG-p were -40 pM. (D) Stimulation of 
proliferation of SK-BR-3 cells. Cells (lo4 cells per well) were plated in 96-well microtiter plates and incubated with rHRGs or the cytostatic monoclonal 
antibody 4D5 (8) for three days before quantiiation with crystal violet (8). Quadruplicate wells were tested at each sample concentration. Half-maximal 
stimulation was observed at -20 pM. 

230 before a stop codon is encountered. 
Amino acid hydropathy analysis (Fig. 

2A) of proHRGa, -8 1, and -82 revealed a 
23-amino acid hydrophobic region includ- 
ing amino acids 243 to 265 (Fig. 2) that 
may be a transmembrane domain or inter- 
nal signal sequence. This suggests that the 
mature HRGa, -81, and -82 molecules of 
45 kD whose sequences are found on the 
NH2-terminal side of this region may be 
derived from a transmembrane-anchored 
precursor molecule. The proHRG-83 pro- 
tein does not contain this hydrophobic 
region and is predicted not to be mem- 
brane-bound. Unlike typical signal se- 
quences the NH2-terminal amino acids of 
these proteins are not hydrophobic. In- 
stead, the first 23 amino acids are dominat- 
ed by charged residues and contain a se- 
quence (GKKKER; residues 13 to 18) that 
closely resembles the consensus sequence 
motif for nuclear targeting (1 5). 

The NH2-terminus determined for 
HRG-a (13) begins with serine 2 encoded 
by the cDNA. Analysis of COOH-termi- 
nal peptides (13) of the mature HRGs 
indicated that none of the COOH-te~ini 
extended beyond HRG-a position 241 
(Fig. 2C). Thus, the mature HRGs prob- 
ably range in size from 228 to 241 amino 
acids with a predicted molecular size of 
-26 kD. Post-translational modification 
occumng at predicted glycosylation sites 
could account for the difference between 
the predicted and observed (-45 kD by 
SDS-PAGE under reducing conditions) 

molecular sizes of the HRGs. 
The HRGs, with the exception of HRG- 

83, each contain twelve cysteine residues 
(Fig. 2), 6 of which are clustered within a 
&amino acid segment adjacent to the 
putative transmembrane region. The char- 
acteristic number and relative positions of 
these cysteines, as well as the strict conser- 
vation of two glycines and arb arginine 
residue within this region (Fig. 2C), estab- 
lish the HRGs as members of the EGF 
family (16). Between the first and sixth 
cysteines the HRGs are most similar (45%) 
to heparin-binding EGF-like growth factor 
(HB-EGF) (1 7). In this same region they 
are 35% identical to amphiregulin (AR) 
(18), 32% identical to TGFa (1 9), and 
27% identical to EGF (1 6). Outside of this 
EGF motif there is little similarity between 
HRGs and other members of the EGF 
family. EGF, AR, HBEGF, and TGF-a are 
all derived from membrane-anchored pre- 
cursors that are cleaved on both sides of the 
EGF structural unit to yield 50- to 84- 
amino acid mature proteins (1 6-1 9). Like 
the EGF family members, the HRGs appear 
to be derived from a membrane-bound pre- 
cursor but require only a single cleavage, 
COOH-terminal to the cysteine cluster, to 
produce mature proteins. 

The expression of HRG mRNA in two 
breast carcinoma cell lines was studied by 
Northern (RNA) blot analysis with a 
cDNA probe encoding the NH2-terminal 
portion of proHRGa. Three major bands, 
representing transcripts of 6.6,2.5, and 1.8 

kb, were detected in mRNA from MDA- 
ME23 1 cells (Fig. 3A). No HRG mRNA 
was detected in the SK-BR-3 cell line, 
which overexpresses p185*B2. 

The various cDNA clones were mapped 
to the MDA-ME23 1 transcripts by hybrid- 
ization with a panel of synthetic oligonu- 
cleotide probes (20). The NH2-terminal 
region common to all four HRG subtypes 
hybridized with all three transcripts. Oligo- 
nucleotides corresponding to the sequence 
of HRG-a hybridized predominantly with 
the 6.6- and 2.5-kb transcripts, and oligo- 
nucleotides corresponding to the sequence of 
HRG-8 hybridized more strongly with the 
1.8-kb transaipt. The common hydrophobic 
and COOH-terminal encoding regions of 
HRG-a, -81, and -82 mRNAs hybridkd 
with only the 6.6-kb and 2.5-kb tramaipts, 
whereas the divergent 3' region of HRG-83 
hybridized only with the l.&kb message (21). 

Various human tissues were also exam- 
ined for the presence of HRG mRNA (Fig. 
3B). Transcripts were found in breast, ova- 
ry, testis, prostate, heart, skeletal muscle, 
lung, liver, kidney, salivary gland, small 
intestine, brain, and spleen but not in 
stomach, pancreas, uterus, or placenta. Al- 
though most of these tissues contained the 
same three classes of transcripts as the 
MDA-ME231 cells, only the 6.6-kb mes- 
sage was observed in heart and skeletal 
muscle. In brain a single transcript of 2.2 kb 
was detected and in testis the 6.643 tran- 
script was present along with others of 2.2, 
1.9, and 1.5 kb. The tissue-specific expres- 
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sion pattern observed for HRG differed 
from that of p185erbB2. Adult liver, spleen, 
and brain contain HRG but not p185erbB2 
transcripts (22), whereas stomach, pancre- 
as, uterus, and placenta contain ~ 1 8 5 " ~ ~ ~  
transcripts (23) but lack HRG mRNA. 

To characterize physical and functional 
properties of the HRGs, recombinant pro- 
teins were produced. Recombinant HRG-a 
(rHRG-a) and recombinant HRG-f31 
(rHRG-f31) representing mature (-45 kD) 
processed forms of proHRGs were purified 
from the conditioned medium of mammali- 
an cells transfected with full-length cDNA 
clones (24). Truncated versions of rHRG-a 

and rHRG-f3 1 (rHRG- 
f31177-241) were produced in Escherichia coli 
(24). Direct binding of rHRG-f3 1 177-241 to 
p185eTbB2 was demonstrated in several ways. 
Scatchard analysis showed a single class of 
high-affinity binding sites (Kd of 105 k 15 
pM) on the surface of MCF-7 cells (Fig. 
4A), a cell line that expresses low levels of 
p185eTbB2 (25). Similar Kd)s were observed 
with MDA-MB-453 cells and SK-BR-3 
cells (26). Whereas unlabeled EGF fully 
competed with 12'1-labeled EGF for binding 
to A43 1 human epidermoid carcinoma cells 
[2 x lo6 receptors per cell (27)], rHRG- 
f31177.241 (at concentrations up to 500 nM) 
failed to compete (Fig. 4B), indicating that 
rHRG-f31177-241 does not bind to the EGF 
receptor. Cross-linking of 1251-labeled 
rHRG-f31 177.241 to receptors on the surface 
of SK-BR-3 cells, MDA-MB-453 cells, and 
MCF-7 cells, which express high, medium, 
and low amounts of p185eTbB2, respectively 
(25), revealed an - 190-kD complex, con- 
sistent with the size expected of a complex 
between p185eTbB2 and the rHRG-f31 177.241 

protein [7.9 kD (26)] (Fig. 4C). The 
amount of this complex was proportional to 
the amount of p185erbB2 expression on the 
various cell lines examined. Because of the 
small size of rHRG-f31177.241 it is difficult to 
determine the precise stoichiometry of the 
-190-kD complex. As has been observed 
with EGF and the EGF receptor (28) (Fig. 
4E) other larger complexes were present 
that may be oligomeric forms of cross- 
linked p185eTbB2 and rHRG-f31 177.241. 

These complexes were eliminated when 
unlabeled rHRG- f3 1 177-241 was added to the 
cells before cross-linking. The identity of 
the cross-linked material was confirmed by 

by addition of excess unlabeled EGF and 
unaffected by addition of rHRG-f3 1 177-241 

(Fig. 4E), thus further substantiating that 
rHRG-f31177-241 does not compete for EGF 
binding to the EGF receptor. 

We immunoprecipitated p185erbB2 from 
MDA-MB-453 cells (which contain moder- 
ate amounts of p185erbB2 but no detectable 
EGF receptor) (25) and detected the protein 
by immunoblotting with antibodies to phos- 
photyrosine. The p185"bB2 protein was 
phosphorylated after treatment with -45- 
kD rHRG-f31 purified from mammalian cells 
(Fig. 5A), or similarly derived -45-kD 
rHRG-a (26). The same result was obtained 
with MCF-7 cells, but a less intense signal 
was observed (26). Whereas both -45-kD 
rHRG-a and -45-kD rHRG-f31 stimulated 
p185ebB2 phosphorylation in MCF-7 cells, 
neither protein activated phosphorylation of 
the EGF receptor in MDA-MB-468 cells 
(which contain large amounts of the EGF 
receptor) (25) (Fig. 5B). This result is con- 
sistent with the fact that rHRG-f31177-241 
bound directly to p185eTbB2 (Fig. 4, A and 
D) and did not compete for binding to the 
EGF receptor (Fig. 4, B and E). 

The relative ability of -45-kD rHRG-a 
and -p l  to induce phosphorylation of 
p185erbB2 was evaluated. Both proteins 
stimulated phosphorylation of p185eTbB2 on 
MCF-7 cells with a medium effective con- 
centration (EC,,) of -40 pM (Fig. 5C). 
Both rHRG-a and -f3l stimulated the 
growth of SK-BR-3 cells with an EC,, of 
-20 pM (Fig. 5D). Optimal stimulation by 
either molecule was observed at -400 pM; 
higher concentrations up to 10 nM were 
less effective in stimulating cell growth. A 
p185erbB2 ligand has been described that 
inhibits the growth of SK-BR-3 cells (9). 

The heregulin family described here 
shows the characteristics expected of a li- 
gand that interacts specifically with 
p185erbB2. The molecular properties of the 
heregulins are different from those of other 
ligands that have been described (9-1 1) in 
that they have a different size, they stimu- 
late rather than inhibit the proliferation of 
breast cancer cells in monolayer culture, 
and they increase tyrosine phosphorylation 
of p185erbB2 but not of the EGF receptor. 
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Less Mortality but More Relapses in Experimental 
Allergic Encephalomyelitis in CD8-/- Mice 

Dow-Rhoon Koh, Wai-Ping Fung-Leung, Alexandra Ho, 
Dawn Gray, Hans Acha-Orbea, Tak-Wah Mak 

Mice lacking in CD8 were generated from homologous recombination in embryonal stem 
cells at the CD8 locus and bred with the experimental allergic encephalomyelitis (EAE)- 
susceptible PLIJ H-2" through four backcross generations to investigate the role of CD8+ 
T cells in this model of multiple sclerosis. The disease onset and susceptibility were similar 
to those of wild-type mice. However, the mutant mice had a milder acute EAE, reflected 
by fewer deaths, but more chronic EAE, reflected by a higher frequency of relapse. This 
suggests that CD8+ T lymphocytes may participate as both effectors and regulators in this 
animal model. 

Experimental allergic encephalomyelitis is 
a T cell-de~endent. induced autoimmune 
disease and is considered an instructive 
ex~erimental model for the human demv- 
elinating disease multiple sclerosis because 
of the ~atholoeical and clinical similarities 
betwee; the two. EAE can be induced in a 
variety of animals by injection of myelin 

D.-R. Koh, W.-P. Fung-Leung, A. Ho, D. Gray, T.-W. 
Mak, Ontario Cancer Institute, Departments of Medical 
Biophysics and Immunology, University of Toronto, 
Princess Margaret Hospital, 500 Sherbourne Street, 
Toronto, Canada M4X 1 Kg. 
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Lausanne Branch, 1066 Epalinges, Switzerland. 

basic protein (MBP) , proteolipid protein 
(PLP), or peptide fragments of the proteins 
along with an adjuvant (1-3). 

The role of T cells in EAE has been 
amply substantiated by immunological ap- 
proaches such as neonatal thymectomy (4) 
and T lymphocyte depletion with antibod- 
ies (5, 6) as well as by the ability to transfer 
disease into a na'ive mouse with activated 
CD4+ T cells (7-12). Depletion of CD4+ 
and CD8+ T cell subsets implicates the 
CD4+ cells as the main disease-initiating 
component (5, 6, 13, 14). Studies involv- 
ing antibody depletion in rats (1 3, 14) have 
not implicated CD8+ cells as having a 
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