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Fast Perceptual Learning in Visual Hyperacuity 

Tomaso Poggio, Manfred Fahle, Shimon Edelman 
In many different spatial discrimination tasks, such as in determining the sign of the offset 
in a vernier stimulus, the human visual system exhibits hyperacuity by evaluating spatial 
relations with the precision of afraction of a photoreceptor's diameter. It is proposed that this 
impressive performance depends in part on a fast learning process that uses relatively few 
examples and that occurs at an early processing stage in the visual pathway. This hypothesis 
is given support by the demonstration that it is possible to synthesize, from a small number 
of examples of a given task, a simple network that attains the required performance level. 
Psychophysical experiments agree with some of the key predictions of the model. In par- 
ticular, fast stimulus-specific learning is fcund to take place in the human visual system, and 
this learning does not transfer between two slightly different hyperacuity tasks. 

For  any given visual task, it is tempting to 
propose a specific algorithm and a corre- 
sponding neural circuitry. It has been often 
implicitly assumed that this machinery may 
be hardwired in the brain. This extreme 
point of view, if taken seriously, may quick- 
ly lead to absurd consequences. Consider 
for instance the many different hyperacuity 
tasks ( I ) ,  some of which are shown in Fig. 
1. Computational analysis reveals that the 
photoreceptor spacing and the low-pass 
characteristics of the eye's optics satisfy (in 
the fovea) the constraints of the sampling 
theorem (2). Thus, the underlying reason 
for the spectacular performance of human 
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subjects in hyperacuity tasks is that the 
signal sampled by the photoreceptors and 
relayed to the brain contains the informa- 
tion necessary for precise localization of 
image features. This observation, however, 
does not constitute an explanation of hy- 
peracuity, because each task is different 
and, in principle, would require a different 
circuit for its solution. Note that the idea of 
a fine-grid reconstruction of the image in 
some layer of the cortex (2) does not 
address the problem, because it still requires 
vet another mechanism that looks at the 
reconstructed image and applies a different 
routine or circuitry for each specific hyper- 
acuity task. 

We have proposed instead (3) that the 
brain may be able to set uppossibly in the 
cortex-appropriate task-specific modules 
that receive i n ~ u t  from retinoto~ic cells 
and learn to solve the task after a short 
training phase in which they are exposed to 
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examples of the task. To show the plausibil- 
ity of our argument, we first describe a model 
that learns to solve vernier acuity tasks from 
a few examples. Synthesizing a module from 
examples for a specific computational task 
may be often regarded as approximating a 
multivariate function from sparse data. We 
have chosen to use for function approxima- 
tion the HyperBF network technique (4). 
Other schemes, such as the popular multi- 
layer perceptrons or more traditional classi- 
fication techniques (5), could probably be 
used as well. In our model we take the 
extreme view that the inputs are photore- 
ceptor activities to demonstrate the plausi- 
bility of low-level, or "early," learning. Bio- 
logically, it may be more reasonable to as- 
sume that the input to the learning stage is 
provided by the circular center-surround and 
oriented cells in V1 (6, 7). 

In the simulated experiments, the learn- 
ing module was given an array of "photore- 
ceptor" cell activities that corresponded to 
the input image blurred by the eye's optics. 
There were eight "receptors," positioned 
randomly (Fig. 2). Each of the inputs was 
calculated by integrating the image over the 
point-spread function of the optics, approx- 
imated by a Gaussian of spatial extent a = 
30 arc sec. The simulated "retinal" patch 
had spatial dimensions of 180 by 360 arc 
sec. The eight-component vector of recep- 
tor outputs constituted the input to the 
HyperBF module, which was trained to 
produce an output of + 1 for one sense of 

Vernier 3 Points 
IefUright? upldown? leftlright? 

Bisection Curvature Interval 
upldown? left/right? widerlnarrower? 

Fig. 1. Examples of five tasks in which human 
subjects perform at hyperacuity levels (that is, 
exhibit resolution finer than the spacing be- 
tween individual photoreceptors). 

the input vernier displacement and - 1 for 
the other over a set of examoles of verniers 
randomly placed relative to the photorecep- 
tor arrav (8). A measure of ~erformance . ~, 

that we have considered is the percentage 
of correct responses (that is, responses in 
which the sign of the module's output 
agreed with the sign of the vernier displace- 
ment, as defined during training) (6, 8). 

The HyperBF module learned to solve 
the vernier task at a hweracuitv level from a , . 
few examples (9). The time course of the 
learning (Fig. 3A) shows that the output 
classification error rate came within 10% of 
its asymptotic value after -200 examples, 
starting from chance-level performance at 
the given offset (10). The model replicated 
(6, 8) several findings in the psychophysics 
of spatial acuity: (i) hyperacuity-level perfor- 
mance; (ii) improvement in the threshold 
with increasing length of the two segments 
constituting the vernier stimulus (I) ; (iii) 
deterioration of performance with increasing 
orientation difference between training and 
testing trials (I 1 ) ; (iv) high performance for 
moving verniers (I); and (v) performance at 
a similar level for another hyperacuity task, 
the three-point bisection, after learning 
from suitable examples (1 2). 

The model's success demonstrates the 
plausibility of the hypothesis that learning 
of hyperacuity tasks takes place early in the 
visual pathway. As it stands, the model can 
predict the precise time course and extent 
of learning only if constraints are imposed 
on some of the parameters. Nevertheless, 
even in the absence of such constraints, a 
critical test is provided by the predictions 
that learning of a hyperacuity task should 
be fast and may not transfer even to a 
slightly different hyperacuity task. The Hy- 
perBF model indeed learns quickly, and it 
exhibits no transfer of learning between 
vertical and horizontal verniers (Fig. 3, A 
and B) (6). We set out to verify experimen- 
tally these predictions for human hyperacu- 
ity performance. The results of the psycho- 
physical experiments have borne out the 
predictions of the model. First, the vernier 

threshold and the error rate in nai've sub- 
jects improved quickly over a few tens of 
trials (Fig. 4A). Second, the subjects ex- 
hibited no transfer of learning between the 
vertical vernier and the horizontal vernier 
tasks or vice versa (Fig. 4B). In additional 
experiments, there was no significant in- 
terocular transfer of learning and no trans- 
fer between line and dot (Fig. 1) stimuli 
(13). The experiments, as well as the sim- 
ulations. involved learnine with feedback. ., 

Preliminary experiments show that human 
subjects can learn even in the absence of 
feedback, but more slowly. The algorithm 
we used in our simulations can also be made 
to learn the hyperacuity task in the absence 
of feedback, at a slower rate (6, 7). 

Our findings on fast stimulus-specific 
learning suggest that the effect shown in 
Fig. 4A cannot be due solely to a simple 
adaptive process, such as a change in the 
overall detection threshold. In that. our 
results are similar to other known instances 
of perceptual learning. A prominent exam- 
ple is provided by the work of Fiorentini 
and Berardi (1 4). who demonstrated stim- , , 

ulus-specific learning effects in the discrim- 
ination of mixed spatial frequency gratings 
that suggested the involvement of an early- 
stage mechanism. In results similar to ours, 
they found that learning did not transfer 
between different orientations of the grat- 
ine. Thev also found that there was interoc- ., 

ular transfer of learning but little transfer 
across retinal locations. Karni and Sagi (1 5) 
recently described a texture discrimination 
task in which the subjects showed a (much 
slower) stimulus-specific learning effect that 
did show interocular transfer but did not 
transfer either across orientations or across 
positions. Other similar instances of specific 
perceptual 1earning.had been reported even 
earlier (16), and even in hyperactivity, 
though on a much slower time scale, by 
McKee and Westheimer [in (1 6)]. Plasticity 
early in the visual pathway has been dem- 
onstrated experimentally (1 7) and could 
provide the adaptive mechanisms required 
by a module of the HyperBF type. 

Fig. 2. (A) A vernier stimu- A B 
lus, superimposed on the 
mosaic of receptive fields 
of "cells" assumed to pro- 
vide the input to the Hy- 
perBF module shown in 
(B). Each receptive field is 
depicted as a circle that 
refers to the point-spread 
function of the optics. Our 
simulation is robust with re- 
spect to positioning the 
"cells" at precisely defined 
locations and with respect 
to their receptive field f 
properties. (B) A network 
equivalent to Eq. 1 (4). 
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Our computational and psychophysical regarding perceptual leaming mentioned 
results support the conjecture that the mod- above suggests that the same line of reason- 
ules responsible for hyperacuity-level per- ing can be applied to visual tasks other than 
formance are synthesized or improved early hyperacuity, and even to faculties other 
in the visual pathway in a demand-driven than vision (3, 18). Importantly, a leaming 
fashion when the appropriate task i s  first HyperBF interpolation can be implemented 
performed by the subject. Related evidence in a simple, biologically plausible network 

Fig. 3. (A) Time course of learning by a Hy- A 
perBF module given the input shown in Fig. 2A 
(vertical verniers appearing at random posi- 
tions, with random offsets uniformly distributed 

0 
between 12 and 18 arc set of visual angle), 
Each block in this simulation consisted of 40 g 6o ............... .j ................. i . . . . . .  i . . . . .  . .  

trials; the ordinate shows the ~ercentaae of 501 
correct responses in each block (mean-* 1 
standard error over six runs), (B) 
Effect of changing stimulus orientation at block 
20 (means of runs; in runs the change was 
from vertical to horizontal, and in another runs 
the change was from horizontal to vertical). 
There was no transfer of learning, as expected, 
because the examples used by the network 

0 10 20 30 

corresponded to very different patterns of acti- Block number 
L 

vation of the inputs in the two cases. Feedback 
was provided in these simulations (but is not 
strictly required by the learning algorithm). (C) 
Responses of the four HyperBF centers (ac- 
quired during an incremental learning session 
that consisted of 150 trials) versus the offset of 
a vertical vernier presented at a fixed location. 
During learning, the offsets were uniformly dis- -20 -10 0 10 20 
tributed between 8 and 12 pixels. The response x Offset (pixels) 
was tested with vertical verniers shown at the 
same location, with an offset ranging from -20 to 20 pixels. This illustration may be regarded as a 
recording of the receptive fields of the centers in the space of possible inputs. Of the four centers, 
one responded strongly to positive offsets and weakly to negative ones, another preferred negative 
offsets, and the other two had no clear preference for any offset sign. An appropriate response 
representing the sign of the offset may be formed at the output level of the HyperBF module with the 
responses of the sign-selective centers. 

Fig. 4. Psychophysical experiments corre- 
sponding to the simulations of Fig. 3. (A) Time 
course of learning in a vernier task. Verniers '00"1 7 

were 20 arc min-long and 2 arc min wide, 
presented on a cathode-ray tube screen with 
195% contrast under photopic conditions at a 
viewing distance of 2.5 m with a constant offset 
(between 15 and 20 arc sec, depending on the 
subject). Percentages of correct responses in a - 
2AFC task improved rapidly during the initial 3 70-1 A* A 1 1  1 

(3, 4). The proposal that much of the 
information processing in the brain i s  per- 
formed by mechanisms related to the Hy- 
perBF modules acting as enhanced look-up 
tables may bridge apparently conflicting 
paradigms, such as Gibson's immediate per- 
ception and Marr's representational theory, 
because appropriately encoded icons or 
"snapshots" of the world appear to allow 
the synthesis o f  computational mechanisms 
effectively equivalent to vision algorithms 
for tasks ranging from hyperacuity to object 
recognition (1 9). 

period of learning, that is, during-about 100 
presentations. Data are means of six na'ive ob- 8 ' 
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Synaptotagmin: A Calcium Sensor on the 
Synaptic Vesicle Surface 

Nils Brose,* Alexander G. Petrenko, Thomas C. Siidhof, 
Rein hard Jahnt* 

Neurons release neurotransmitters by calcium-dependent exocytosis of synaptic vesicles. 
However, the molecular steps transducing the calcium signal into membrane fusion are still 
an enigma. It is reported here that synaptotagmin, a highly conserved synaptic vesicle 
protein, binds calcium at physiological concentrations in a complex with negatively charged 
phospholipids. This binding is specific for calcium and involves the cytoplasmic domain of 
synaptotagmin. Calcium binding is dependent on the intact oligomeric structure of syn- 
aptotagmin (it is abolished by proteclytic cleavage at a single site). These results suggest 
that synaptotagmin acts as a cooperative calcium receptor in exocytosis. 

Calcium-dependent exocytosis of synaptic 
vesicles is the central step in the sequence 
of events from the arrival of an action 
potential to the release of neurotransmit- 
ters. It is generally accepted that Ca2+ 
enters the nerve terminal via voltage-gated 
CaZ+ channels in the presynaptic plasma 
membrane. Intracellular recordings in mod- - 
el synapses such as the squid giant synapse 
have shown that the latencv between CaZ+ 
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entry and the release of transmitter is in the 
range of 200 ks. This implies that a com- 
plex between synaptic vesicles and the plas- 
ma membrane must exist in the resting state 
because the time after Ca2+ entry is too 
short to allow for vesicle docking before 
fusion. Furthermore, the dependence of 
transmitter release on the intraterminal 
Ca2+ concentration is nonlinear and highly 
coo~erative ( 1  1. 

\ ,  

The Ca2+ receptor protein for exocytosis 
has not been identified. However, certain 
predictions about its properties can be 
made. Because of the short latency between 
Ca2+ influx and exocytosis, it is likely that 
the CaZ+ receptor is part of the complex 
formed between the plasma membrane and 
the synaptic vesicle and is probably located 
on one of these membrane compartments. 
In addition, Ca2+ must induce a change in 
the properties of the receptor protein, 
which ultimately causes a rearrangement of 
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