
that an effector-signaling domain is present 
in the NH2-terminus of GAP. Such a model 
is also supported by studies showing that the 
inhibition muscarinic atrial K+  channel cur- 
rents by Ras depends on interaction of Ras 
with GAP (1 7, 22). The putative signaling 
domain on GAP seems to be located within 
the sequence containing Src-homology re- 
gions because experiments done with a trun- 
cated form of GAP lacking the NH2-termi- 
nal hydrophobic region (nucleotides 392 to 
3140) gave results in our experiments iden- 
tical to those obtained with full-length GAP 
(1 5). However, expression of a fragment of 
GAP containing amino acids 1 ~o 701, 
which contains the SH2-SH3 domain but 
lacks the binding region to Ras, did not 
modifi the transactivation of Py-TK-CAT 
in presence or absence of any of the plasmids 
described above (15). Thus it is not clear 
which domain on the NH2-terminus of GAP 
is critical for signal transduction. Increased 
expression of GAP in CHO cells did not 
modify signaling by oncogenic Ras. It may 
be that GAP, as an effector, is already more 
abundant than Ras (23) or that the supply of 
GAP that acts as an effector is tightly regu- 
lated within the cell. 

GAP may be a direct link between Ras- 
GTP and other downstream effectors. GAP 
enhances the action of transforming v-Ha- 
Ras and insulin in Xenopus oocytes (24), 
although GAP itself is unable to promote a 
full maturation response in oocytes (25). 
These data indicate that GAP may act to 
transmit signals to other effectors, although 
it is possible that GAP enhances the Ras 
effect by binding an inhibitor of maturation, 
such as a related rap gene product. One 
interpretation of our data is that GAP-C, 
lacking SH2-SH3 sequences and the regions 
necessary to bind lipids, recognizes and traps 
the oncogenic Ras-GTP complex and there- 
by prevents it from properly eliciting a 
downstream signal. This model also implies 
that GAP-C should induce phenotypic re- 
version. However, GAP-C does not have 
anti-oncogenic properties (1 2, 14), perhaps 
because the affinity of GAP-C for Ras-GTP 
is not high enough. It is not known whether 
the relative or absolute amount of Ras-GTP 
is more important for signaling by Ras. 
However, a modified GAP-C with higher 
affinity for Ras, such as that displayed by 
NF1-GAP (an alternative effector for Ras- 
GTP in all cells) (26, 28) might induce 
reversion of oncogenic Ras transformation. 
For example, Rapla, which competes with 
GAP for binding to Ras in vitro (29, 30), 
has anti-oncogenic properties in a cell line 
transformed by v-Ki-ras (3 1). Blocking the 
interaction between Ras-GTP and GAP is 
thus a potential mechanism of action for a 
therapeutic drug. 

Note added in proof: The SH2-SH3 do- 
main of GAP appears to participate in the 
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Oncogenic Forms of p53 Inhibit p53-Regulated 
Gene Expression 

Scott E. Kern, Jennifer A. Pietenpol, Sam Thiagalingam, 
Albert Seymour, Kenneth W. Kinzler, Bert Vogelstein* 

Mutant forms of the gene encoding the tumor suppressor p53 are found in numerous 
human malignancies, but the physiologic function of p53 and the effects of mutations on 
this function are unknown. The p53 protein binds DNA in a sequence-specific manner and 
thus may regulate gene transcription. Cotransfection experiments showed that wild-type 
p53 activated the expression of genes adjacent to a p53 DNA binding site. The level of 
activation correlated with DNA binding in vitro. Oncogenic forms of p53 lost this activity. 
Moreover, all mutants inhibited the activity of coexpressed wild-type p53, providing a basis 
for the selection of such mutants during tumorigenesis. 

T h e  gene for the nuclear phosphoprotein 
p53 is the most commonly mutated gene yet 
identified in human cancers (I ) . Missense 
mutations occur in tumors of the colon, 
lung, breast, ovary, bladder, and several 
other organs (2-4). The p53 gene can 
suppress the growth of transformed murine 
(5) or human cells (6, 7), but oncogenic 
forms lose this sumressor function. 

A L 

Evidence suggests that p53 may regulate 
gene transcription. A nuclear protein, p53 
can bind to DNA in vitro both sequence 
specifically (8, 9) and nonspecifically (1 0). 

In addition, the NH2-terminus of p53 be- 
haves as an acidic transcriptional activation 
domain when fused to GAL4 (1 1, 12). 

In this report we test whether p53 can 
directly activate gene expression through its 
DNA binding site and whether oncogenic 
forms of p53 can interfere with this activa- 
tion. Reporter plasmids (PG,-CAT series) 
contained the polyomavirus early promoter 
and the chloramphenicol acetyl transferase 
(CAT) gene located downstream of a DNA 
sequence (PG) that binds p53 in vitro (Fig. 
1). The reporter and an expression vector that 
encoded human wild-type p53 (13) were 

Oncology Center and Department of Pathology, Johns transfected together into the human ''lore'- 
Hopkins University School of Medicine, Baltimore, MD tal cancer cell line HCT 116 (14). This cell 
21 231 line makes low amounts of p53 protein (1 5). 
*To whom correspondence should be addressed. The intact wild-type p53 protein acti- 
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vated CAT gene expression, and the activa- 
tion correlated with the number of p53 
DNA binding sites (PG repeats) upstream of 
the reporter (Fig. 2). The larger the number 
of PG repeats, the greater the binding to p53 
in vim (Fig. 2A) and the higher the CAT 
expression in vivo (Fig. 2B, lanes 2 to 7). 
Transactivation also increased with increas- 
ing amounts of p53 transfected (Table 1). 
When GC base pairs of the PG oligonucle- 
otide were altered to form MG repeats (Fig. 
I), the resulting sequence did not bind p53 
in vim (Fig. 3) or activate CAT expression 
in vivo (Table 1; Fig. 2B). The transactiva- 
tion of CAT was independent of  the orien- 

Table 1. Activation of gene expression in hu- 
man cells by p53. Transfection and CAT assays 
were performed as described (14) with 1.7 pg 
of reporter vector. Activities reflect the fraction 
of chloramphenicol converted to an acetylated 
form, expressed relative to the CAT activity 
observed with the p53-wt transfection in each 
experiment. In experiments 1, 2, and 3, 1.7, 
0.85, and 2.55 p,g of expression vector, respec- 
tively, were used. The CAT activity with the 
p53-wt expressor was 2.1-fold higher in exper- 
iment 3 than in experiment 2, which were done 
concurrently. 

p53 ex- 
pression 
vector 

p53-wt 
p53-wt 
p53- 1 43 
p53-175 
p53-248 
p53-273 

Relative CAT activity 
Reporter 

Exp. 1 Exp. 2 Exp. 3 

tation of the PG multimer (legend to Fig. (Fig. 2B) suggested that p53 directly acti- 
2B) and its distance from the promoter (16). vated CAT gene expression in vivo by 

The correlation between p53 binding to binding to PG multimers. If this activity 
the PG multimer in v i m  (Fig. 2A) and the were crucial to the tumor suppressor activ- 
expression from PG,-CAT reporters in vivo ity of wild-type p53, naturally occurring 

Fig. 1. Reporter and expresser PCirCAT 
constructs used in transfections. 
PG-. n co~ies of the ~ 5 3  bindina 
s4uence' PG; MG,, n copies of a - 

*PI- mutated sequence, which does MG"CAT 

not bind p53; CAT, the chloram- PI Ir;n 
phenicol acetyltransferase cod- 
ing sequence; Py, the early gene ~ 5 3 1 ~  -+ CMV - 
promoter from polyomavirus; 
CMV, the cytomegalovirus pro- ~ 5 3 1 4 3  
moter from the parent vector PC- p5J-175 
MVNeoBam. Constructions are 
detailed in (13). ~ 5 3 2 4 8  

Table 2. Activation of gene expression in yeast 
by p53. Wild-type or mutant p53 expression 
vectors and the p-gal reporter plasmids were 
transfected into S. cerevisiae and clones were 
obtained. The p53 expression was induced 
with galactose, and p-gal activity was mea- 
sured in units of nanomoles per minute per 
milligram of protein. Two independent clones 
[experiment 1 and experiment 21 were tested. 
Strain construction and assays were performed 
[as described (27)l. Less than 1 unit was seen 
in the absence of galactose induction. The 
residual activity of the Yp53-143 mutant may 
have been due to a slight wild-type activity 
observable with valine to alanine substitution 
mutants at the relatively low temperature (30°C) 
used for yeast growth (28). 

p53 ex- 
pression 
vector 

None 
YP53 
Yp53-143 
Yp53-273 
Yp53 
Yp53 
Yp53 

Reporter 

El,-lac2 
PG16-lac2 
PGl,lacZ 
PG16-lac2 
PG,- l a d  
PGl-lad 
MGl,-lac2 

p-gal activity 

Exp. 1 Exp. 2 

3 2 
13,000 8,000 

150 85 
5 2 

15,000 11,000 
2,600 3,000 

15 4 

Fig. 2. Correlation of DNA binding and transactivation. (A) Relatii DNA binding abilities of clones 
containing repeats of a p53-binding sequence (PG, series), in an immunoprecipitation assay. 
Clones were cleaved by restriction endonucleases to extricate the PG, repeat, end-labeled, 
incubated with purified baculovirus-produced wild-type human p53, and immunoprecipitated with 
anti-p53 and protein Mepharose; bound fragments were recovered and separated on a 
nondenaturing polyacrylamide gel [as described in (a)]. In the absence of antibodies, less than 
0.5% of the labeled DNA was found in the precipitate. C, control lane, containing 2% of the labeled 
DNA used in the binding reactions; B, bound DNA recovered from the immunoprecipitates. (B) 
Transactivation efficiencies of reporters containing the various ffi, concatemers compared by CAT 
assay. Equal amounts (1.7 p,g) of the given reporter and the expression vector p53-wt were 
transfected into HCT 116 cells. Reporters had one orientation of the PG, sequence (. . . TGCCT . . . 
Py . . . CAT . . .), except for PGiCAT and %,,-CAT, which had the opposite orientation (. . . 
AGGCA . . . Py . . . CAT . . .). CAT assays were performed [as described (14)l. Results are 
expressed relative to the CAT activity in lane 7, which was arbitrarily set at 100. 
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Flg. 3. Comparison of the ability of wild-type 
and mutant p53 to bind to PG,, and lack of 
DNA binding ability of MG,,. Each p53 form 
was produced in a rabbit lysate (10, 23) and 
equalized for p53 quantity by Western blot 
analysis (18). C, control lanes, containing 2% of 
the labeled DNA used in the binding reaction. 
B, bound DNA recovered from immunoprecip 
itations, performed as described (23). 

p53 mutants might be defective in this 
function. To test this, we transiently w- 
transfected mutant p53 genes into cells 
together with PG13:CAT (17, 18). All 
tumorderived mutatlons examined lost the 
ability to transactivate PG13driven CAT 
expression (Table 1). The inability of p53 
proteins having tumorderived mutations to 
bind specifically to the p53 recognition 
sequences in this construct (Fig. 3, lanes 3 
to 6) was thus consistently reflected as 
defects in transactivation (1 9). 

If the ability of p53 to bind to DNA 
sequences in vivo and activate the tran- 
scription of adjacent genes were an intrinsic 
feature of the protein, this activity should 
be transferable to simpler eukaryotes. In- 
deed, the NH,-terminal acidic activation 
domain of p53 has been reported to func- 
tion in Sacchamyces mevisiae when fused 
to the DNA binding domain of GAL4 (I I). 
We thus stably transformed yeast with the 
kzZ reporter gene   laced downstream of F'G 
multimers (PG,,-kzZ) and a galactose-in- 
ducible p53 expression vector (Yp53). The 
addition of galactose to the medium result- 

Flg. 4. Dorninant-negative effects of various 
mutant p53 proteins. The p53-wt (0.85 pg) was 
used in all transfections, without (lane 1) or with 
the addition of 0.85 pg (lanes 2,4,6,8) or 2.55 
pg (lanes 3, 5, 7,9) of mutant p53 construct, or 
with an additional 2.55 pg of p53-wt (lane 10). 
The PG,,-CAT reporter (1.7 pg) was used in 
each transfection. The results shown are repre- 
sentative of at least two transfections done on 
separate days. 

ed in p53 expression accompanied by a 
strilung elevation in p-galactosidase (p-gal) 
activity (Table 2). When the MG multimer 
(non-p53 binding) was substituted for the 
PG multimer, little activation of @gal was 
observed (Table 2). Moreover, the ability 
of p53 mutants to transactivate @-gal in 
yeast cells was reduced by more than 80- 
fold compared to the ability of the wild-type 
p53. Thus, the results in S. cerevisiae were 
similar to those observed in human cells. 

It is thought that mutant p53 can inhibit 
the growth suppressor effects of wild-type 
p53 through a "dominant negative" action 
(5-7, 20, 21). To determine whether an 
analogous dominant negative effect could be 
observed on transcriptional activation, we 
cotransfected wild-type and mutant p53 with 
the F'G,,-CAT reporter into HCT 116 cells. 
When equal amounts of wild-type and mu- 
tant p53 expression vectors were used, the 
expression of CAT decreased by approxi- 
mately 50% compared to that achieved by 
wild-type p53 alone (Fig. 4, lanes 2, 4, 6, 
and 8). Increasing the ratio of mutant p53 to 
wild-type p53 (22) produced an 84 to 95% 
reduction (Fig. 4, lanes 3, 5, 7, and 9). 
When additional wild-type p53 expression 
vector was substituted for mutant p53 expres- 
sion vector in the w d e c t i o n  experiment, 
the CAT expression increased rather than 
decreased, as expected (Fig. 4, lane 10). 

The inhibitory effect could be caused by 
a failure of the mutant-wild-type complexes 
to bind to DNA or by a failure to activate 
transcription once bound. To distinguish 
between these two possibilities, we cotrans- 
lated wild-type p53 and the His17' mutant 
of p53 in vitro. Under these conditions, it 

wt  w t  + + 
wt mut wt  mut 

C B B B  . . 

Flg. 5. Inactivation of in vitro DNA binding of 
wild-type p53 by mutant forms. An end-labeled 
fragment containing the PG,, repeat was im- 
munoprecipitated with 10 pI of an in vitro trans- 
lation reaction made with 0.1 pg of wild-type 
p53 RNA (lane 2). In lanes 3 and 4. 0.1 and 0.3 
pg, respectively, of His175 RNA was used in 
addition to 0.1 pg of wild-type p53 template. In 
vitro translations were performed as described 
(23). 6, bound DNA recovered from immuno- 
precipitations; C, control lane containing 2% of 
the labeled DNA used in the binding reactions. 
In lanes 5 to 7, 10 pl of the in vitro translation 
reactions used for lanes 2 to 4, respectively, 
were separated by SDS-polyactylamide gel 
electrophoresis and assessed by Western blot 
for p53 protein concentration (18). 

has been shown that wild-type p53 forms 
hetero-oligomers with mutant p53 (23). 
The mutant p53 protein significantly inhib- 
ited the ability of wild-type protein to bind 
DNA in these experiments (Fig. 5), provid- 
ing an explanation for the inhibitory effects 
seen in vivo (Fig. 4). 

Although several properties of p53 have 
been previously described (2 1 ), the ability 
to bind to specific DNA sequences and 
control adjacent gene transcription is the 
only functional property consistently lost in 
mutants from all four evolutionarily con- 
served domains of the p53 protein (Fig. 3 
and Table 1). This suggests that transcrip- 
tional regulation is fundamental to wild- 
type p53 function. 

The ~ 5 3  gene can inhibit the expression 
of some reporter gene constructs (24); how- 
ever, it is not known whether such effects 
are mediated by p53 binding to adjacent 
sequence elements. Our results do not ex- 
clude the possibility that p53 can directly 
inhibit, as well as activate, transcription of 
genes. Precedents exist for the ability of a 
single transcription factor to either activate 
or inhibit expression, depending on the 
sequence used to drive expression (25). 

The simplest interpretation of the dom- 
inant-negative effects of the p53 mutants is 
that mutant and wild-type p53 form a het- 
eromeric complex (23, 26) that is debilitat- 
ed in its ability to bind DNA, and therefore 
cannot control transcription of genes adja- 
cent to these binding sites. Such adjacent 
genes may include those required for inhi- 
bition of cell growth or invasion; this would 
explain how p53 mutations lead to tumor 
progression. 
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Cholecystokinin Antianalgesia: Safety Cues 
Abolish Morphine Analgesia 

Eric P. Wiertelaklk Steven F. Maier, Linda R. Watkins 
Environmental stimuli that signal the occurrence of aversive or dangerous events activate 
endogenous opiate analgesia systems. Signals for safety (the nonoccurrence of aversive 
events) produce the opposite and inhibit environmentally produced analgesia. Stimuli that 

'signal safety are now shown to abolish the analgesic effect of morphine, even when 
morphine is applied directly to spinal cord. Further, this antiopiate effect occurs because 
the environmental stimulus leads to release of the neuropeptide cholecystokinin in the 
spinal cord. This process may contribute to the regulation of pain and the development of 
opiate tolerance. 

T h e  discovery of endogenous pain inhibi- 
tory circuitries in the central nervous sys- 
tem (CNS) led to investigation of environ- 
mental events that trigger their activation 
(1). In general, these neural circuits are 
activated by contact either with noxious 
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stimuli or with cues that signal such nox- 
ious events (that is, innate or learned dan- 
ger signals) (1). The CNS may also contain 
circuitry that can inhibit pain inhibition 
systems ( 2 4 ) .  This evidence rests, to date, 
on the effects of administering exogenous 
agonists and antagonists of possible antian- 
algesia neurotransmitters. In agreement 
with the concept of antianalgesia systems, 
agonists block whereas antagonists or anti- 

SCIENCE * VOL. 256 . 8 MAY 1992 




