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Occurrence of Sialic Acids in
Drosophila melanogaster

Jirgen Roth,* Andreas Kempf, Gerd Reuter, Roland Schauer,
Walter J. Gehring '

Sialylated oligosaccharides, which are cell type—specific and developmentally regulated,
have been implicated in a variety of complex biological events. Their broad functional
importance is reflected by their presence in a wide variety of phyla extending from Echi-
nodermata through higher vertebrates. Here, sialic acids are detected throughout devel-
opment in an insect, Drosophila. Homopolymers of a 2,8-linked sialic acid, polysialic acid,
are developmentally regulated and only expressed during early Drosophila development.

Sialic acids comprise a large family of
closely related derivatives of N-acetyl-
neuraminic acid and N-glycolylneuraminic
acid (I). Terminal glycosylation sequences,
in particular sialylated oligosaccharides that
are cell type-specific and developmentally

regulated, have been implicated in a variety
of complex biological events (2). The ex-
pression of various specific sialyltransferases
is the basis for the synthesis of such glyco-
sylation sequences (3). Sialic acids can be
found in a variety of chemical linkages,

Fig. 1. Cytochemical detection of sialic acid in Drosophila embryos with use of the Limax flavus lectin
(11). (A) Whole mount of a blastoderm stage embryo (20) showing intensely stained pole cells
(arrowheads) and stained blastoderm cells. (B) Same embryo as in (A) at another plane of focus to
demonstrate the honeycomb pattern of lectin staining on blastoderm cells. (C and D) Early
gastrulation stage embryo. Staining of pole cells [arrowheads in (C)] and blastoderm cells is evident,
along with additional labeling along the ventral [arrowheads in (D)] and cephalic [arrows in (D)]
furrows. (E) Rapid phase of germ band elongation. Dorsal view of an embryo that exhibits staining of
the ventral furrow (arrowheads) and the invaginating pole cells (arrows) as well as the honeycomb
staining pattern. (F) Embryo with fully extended germ band. Small groups of cells at both sides of the
ventral furrow are more intensely stained than neighboring cells. (G) Embryo after germ band
shortening and during dorsal closure exhibits staining in the ventral nervous system (arrowheads) and
the brain ganglia (arrows). In all photographs embryos are oriented with the anterior end to the right.
Scale bar = 0.1 mm.
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including linkage to different penultimate
sugars of a glycosylation sequence. Specific
sequences expressed in one context may be
critical for biological recognition but may
have no function in another context (2) as
shown in studies of sialic acids during orga-
nogenesis (4), cell differentiation (5), en-
dothelial cell leukocyte adhesion molecule
(ELAM-1)-mediated cell adhesion (6), in-
teraction of viruses and certain pathogenic
bacteria with their host cells (7), and tumor
cell invasiveness (8). Sialic acids are found

in the Echinodermata and in most chordates




Fig. 2. Expression of polysialic acid during Drosophila development demonstrated by immunoblot
analysis with MAb 735 (27). (A) In homogenates from 18-day, embryonic mouse brain and 12- to 18-hour
Drosophila embryos a high molecular weight band was revealed. Time segments O to 6 hours, 6 to 12
hours, 12 to 18 hours, and 18 to 24 hours are followed by first, second, and third instars. (B) A polysialic
acid—positive double band at =210 kD was detected during 14 to 18 hours of development.
Endosialidase N pretreatment of nitrocellulose (C) aimost completely abolishes staining. Time segments:
0 to 2 hours, cleavage divisions and syncytial blastoderm; 2 to 4 hours, cellular blastoderm, gastrulation,
and amnioproctodeal invagination; 4 to 6 hours, stomodeal invagination; 6 to 8 hours, germ band
shortening; 8 to 10 hours, germ band shortening; 10 to 12 hours, head involution and closure of midgut;
12to 14 hours, dorsal closure; 14 to 16 hours, closure of embryo; 16 to 24 hours, fully developed embryo

and hatching.

Fig. 3. Electron-impact
mass spectrum (70 eV)
of N-acetyineuraminic
acid as per-O-trimethyl-
silyl derivative after gas-
liquid chromatography—
mass spectrometry iso-
lated from 12- to 18-
hour Drosophila em-
bryos. The same mass
spectrum was obtained
from O- to 6-hour embry-
os. The characteristic
fragment ions A through
G are indicated togeth-
er with the structure of
N-acetylneuraminic acid
(15). The embryos were
lyophylized (14.6 g), and
the sialic acids were lib-
erated by mild acid hy- 100 200
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drolysis, purified by ion-exchange chromatographies, isolated by preparative thin-layer chroma-

tography, and further analyzed (15).

but have been encountered only occasion-
ally in prokaryotes (9).

Conclusive evidence for the presence of
sialic acids in Annelida, Arthropoda, and
Mollusca is missing, and the analysis of
several insects including Musca domestica,
Calliphora  erythrocephala, and Drosophila
melanogaster has yielded negative results.
Although lepidopteran insect cell lines
have recently been shown to possess the
glycosyltransferase genes for the synthesis of
N-linked, complex-type oligosaccharides,
activation of the genes was observed only
under certain conditions such as transfec-
tion with recombinant baculovirus/human
plasminogen complementary DNA (10).

We found sialic acids in D. melanogaster by
the use of lectin-gold histochemistry, Western
blotting, and gas-liquid chromatography—mass
spectroscopy (GLC-MS). Sialic acids were
detected throughout the development of
Drosophila, from blastoderm to third instar
larvae stage. Polysialic acid (homopolymers of
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a 2,8-linked sialic acid), however, showed a
developmentally regulated expression.

For cytochemistry the Limax flavus lectin,
which exhibits high specificity for sialic ac-
ids, was applied (11). At the blastoderm
stage, all cells exhibited staining, although
the pole cells stained most intensely (Fig. 1,
A and B). By electron microscopy, the
plasma membrane, the Golgi apparatus, and
cytoplasmic - vesicles of blastodermal cells
showed lectin labeling. The staining pattern
remained during gastrulation and in early
germ-band elongation, during which addi-
tional intense labeling along the ventral and
cephalic furrow was seen (Fig. 1, C, D, and
E). In embryos with a fully extended germ
band, groups of cells on both sides of the
ventral furrow were stained (Fig. 1F). Em-
bryos after germ-band shortening showed
staining in all structures, although the most
intense staining was in the nervous system
(Fig. 1G). No lectin staining was observed
in various controls (12).

To test if homopolymers of a 2,8-linked
sialic acid [polysialic acid (PSA)] were ex-
pressed during Drosophila development, we
used the monoclonal antibody MAb 735,
which specifically recognizes PSA (13). By
Western blot analysis, PSA expression was
restricted to 14- to 18-hour embryos (Fig. 2,
A and B). Pretreatment with bacterioph-
age-associated endosialidase N (14) and
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preabsorption of MAb 735 with colominic
acid (Escherichia coli K1 capsular polysac-
charide composed of homopolymers of a
2,8-linked sialic acid) abolished the immu-
nostaining (Fig. 2C).

The structural analysis of sialic acids in 0-
to 6-hour and 12- to 18-hour embryos was
performed by a combination of GLC-MS
(15) (Fig. 3). Colorimetric quantification by
the periodic acid—thiobarbituric acid test was
used to determine the amount of sialic acid
(Neu5Ac) in 0- to 6-hour-old and 12- to
18-hour-old Drosophila embryos and gave 5
png and 4.9 pg per gram of dry weight,
respectively. The media used for culture of
Drosophila did not contain sialic acids (15).

Thus, sialic acid is endogenous in Dro-
sophila embryos. In bacteria, the capability
to synthesize sialic acids was thought to be
acquired only late in evolution after symbi-
otic interactions with hosts. Genetic and
structural analysis, however, suggests that
this is an inherent synthetic function (16).
Therefore, sialic acids seem to have arisen
early in evolution. The PSA in Drosophila
embryos is probably on the neural cell adhe-
sion molecule (N-CAM) (17). The detec-



tion of PSA is of particular interestbecause
this polyglycan seems important in regulating
the adhesive properties of N-CAM during
neuronal development (18). In larvae and
adult of the fly Calliphora vicina, a nonsulfated,
glucuronic acid moiety similar to the L2/
HNK-1 carbohydrate epitope of several cell
adhesion molecules, among them N-CAM,
was recently detected (19). These data suggest
a high degree of phylogenetic conservation of
functionally important glycans.
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Modality-Specific Retrograde Amnesia of Fear
Jeansok J. Kim and Michael S. Fanselow

Emotional responses such as fear are rapidly acquired through classical conditioning. This
report examines the neural substrate underlying memory of acquired fear. Rats were
classically conditioned to fear both tone and context through the use of aversive foot
shocks. Lesions were made in the hippocampus either 1, 7, 14, or 28 days after training.
Contextual fear was abolished in the rats that received lesions 1 day after fear conditioning.
However, rats for which the interval between learning and hippocampal lesions was longer
retained significant contextual fear memory. In the same animals, lesions did not affect fear
response to the tone at any time. These results indicate that fear memory is not a single
process and that the hippocampus may have a time-limited role in associative fear mem-
ories evoked by polymodal (contextual) but not unimodal (tone) sensory stimuli.

The hippocampus is thought to serve a
temporary function in the storage of mem-
ory because, when the hippocampus is dam-
aged, recent but not remote memories are
impaired (I). This memory syndrome is
known as “retrograde amnesia,” and it sug-
gests that with the passage of time memo-
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ries are stabilized (or consolidated) else-
where in the brain (for example, in the
neocortex). Because the hippocampus is
not thought to be essential for learning and
memory in most cases of simple classical
conditioning (2), retrograde amnesia as a
result of hippocampal damage has hereto-
fore not been directly assessed in basic
associative paradigms. Therefore, we tested
whether retrograde amnesia occurs in rats
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by using a simple classical fear-conditioning
procedure.

Long-Evans female rats underwent 15
tone—foot shock pairings (tone: 2000 Hz,
90 dB, 30 s; foot shock: 1 mA, 2 s) in a
distinctive chamber (3). A short (3-min),
fixed intertrial interval was used to ensure
reliable fear conditioning to both tone and
chamber. After training, bilateral electro-
lytic lesions were made in the hippocampus
either 1, 7, 14, or 28 days later (n = 8) (4).
Figure 1 shows a transverse section from the
brain of a typical rat in the hippocampus-
lesioned group. For unlesioned controls the
electrode was lowered to the hippocampus
without passing current (n = 6). Addition-
ally, control lesions were made 1 day after
training in the area of neocortex overlying
the hippocampus (n = 8). All animals were
given 7 days to recover after surgery before
testing.

To test fear conditioning associated with
context (the chamber), each rat was placed
back in the chamber for 8 min. The foot
shock and tone were not given during this
test. The amount of fear conditioned to the
chamber was assessed by scoring freezing
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