
general. Furthermore, the Min strain has 
permitted the identification of unlinked 
modifier loci in the mouse genome that 
decrease the number of intestinal adenomas 
arising in Min mice (1 8). Identification and 
characterization of potential human coun- 
terparts of these modifier loci could be 
useful in understanding why some FAP 
patients develop many fewer tumors than 
average (19) and in understanding colon 
cancer risk in the general population. 
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Enhanced Degradation of the Ferritin Repressor 
Protein During lnduction of Ferritin 

Messenger RNA Translation 
Lisa Smith Goessling, Susan Daniels-McQueen, 

Maitrayee Bhattacharyya-Pakrasi, Jih-Jing Lin, Robert E. Thach* 
lnduction of ferritin synthesis in cultured cells by heme or iron is accompanied by degra- 
dation of the ferritin repressor protein (FRP). Intermediates in the degradative pathway 
apparently include FRP covalently linked in larger aggregates. The effect of iron on FRP 
degradation is enhanced by porphyrin precursors but is decreased by inhibitors of por- 
phyrin synthesis, which implies that heme is an active agent. These results suggest that 
translational induction in this system may be caused by enhanced repressor degradation. 
While unique among translational regulatory systems, this process is common to a variety 
of other biosynthetic control mechanisms. 

Synthesis of ferritin, the ubiquitous iron 
storage protein, is regulated at the transla- 
tional level by iron in vertebrates (1, 2). 
The regulatory machinery consists of a con- 
served 28-nucleotide sequence in the 5 '  
untranslated reeion of the ferritin mRNA 

u 

[the iron-responsive element (IRE)] and a 
98-kD orotein that binds to the IRE in the 
absence of iron and inhibits translation. 
This protein is known as the ferritin repres- 
sor protein, FRP, the IRE-binding protein, 
or the iron regulatory factor. The FRP is a 
member of a family of proteins, some or all 
of which recognize the IRE in ferritin, 
transferrin (Tf) receptor, and erythroid 
8-aminolevulinic acid (ALA)-synthase 
mRNAs (3-8). A third component of the 
machinery is the "inducer," which is iron 
complexed either with porphyrin (as heme) 

'or with other compounds (9-1 1). We test- 
ed the effects of various iron sources on the 
turnover of FRP in cells grown in culture. 
Our results show that FRP normally turns 
over at a slow rate in vivo, but that iron, 
probably acting through heme, enhances 
the rate of FRP degradation. This effect was 
observed with concentrations of iron or 
heme that induce ferritin svnthesis. which 
suggests that repressor degradation may be a 
direct cause of translational induction. 

The first indication that the natural 
turnover of FRP might result in dere~res- - 
sion of ferritin synthesis came from the 

Department of Biology, Washington University, St. 
Louis, MO 63130. 

*To whom correspondence should be addressed. 

observation that actinomycin D causes a 
gradual derepression of ferritin synthesis: 
after 19 hours of treatment, ferritin synthe- 
sis in transformed mouse cells is dere~ressed 
to approximately half the rate achieved in 
the presence of iron (12). Synthesis of no 
other protein is increased by actinomycin D 
(13). Similar results have been reported 
with cordycepin inhibiting mRNA synthe- 
sis (1 1). Moreover, the maximal FRP con- 
centration produced by treatment with the 
iron chelator Desferal is achieved only if 
concomitant protein synthesis is allowed to 
occur (4). These results suggest that FRP 
ordinarilv turns over in the oresence of 
iron, which results in derepression of fer- 
ritin synthesis and degradation of Tf recep- 
tor mRNA. 

To test this hypothesis, we determined 
the stability of newly synthesized FRP by 
first labeling rabbit cells for 2 hours in the 
absence of an iron source and then measur- 
ing radioactivity in FRP in the presence of 
added iron or heme (14). The immune- 
precipitable label in FRP disappears as a 
result of treatment with heme (Fin. 1A). . - 
An early step in this degradative pathway 
appears to be the covalent linking of FRP to 
one or more other proteins. The major 
linked species migrates in SDS-polyacryl- 
amide gel electrophoresis (PAGE) at about 
200 kD. These intermediates are eventually 
degraded, with traces of presumptive degra- 
dation products sometimes visible at about 
25. 40. and 70 kD. Formation of the linked , . ,  
species may be reversible after a brief expo- 
sure to heme (15). 
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FAC + Tf 
ALA 

Fig. 1. Degradation of FRP that accompanies 
induction of ferritin synthesis by heme or iron. 
Rabbit RAB-9 cells were. labeled with =Sme- 
thionine plus =S-cysteine for 2 hours (14). 
Washed twice with unlabeled media, cells were 
treated with (A) 50 pM heme in the presence of 
excess (1 mM) unlabeled methionine for the 
indicated times (hours) or with (B) excess (1 
mM) unlabeled methionine for 6 hours in the 
presence, where indicated, of 100 pM FAC with 
Tf (0.2 rngtml) or 2 mM ALA. Cells were then 
lysed, and labeled FRP was immune-precipitat- 
ed with rat anti-rabbit FRP antibody and ana- 
lyzed by SDS-PAGE and fluorography. Molec- 
ular size markers are indicated to the left in 
kilodaltons. 

Treatment with iron can also stimulate 
FRP crowlinking and degradation (Fig. 1B 
and Table 1). These effects are increased by 
the F n c e  of ALA (a committed precursor 
of porphyrin synthesis) but inhibited by suc- 
cinylacetone (SA) and Desheral (both strong 
inhibitors of heme synthesis). These results 
suggest that the iron-porphyrin adduct, heme, 
is involved in the production of degradative 
e k t s .  Neither Desferal nor SA blocks the 
effects of heme addition. None of these re- 
agents significantly afFects the stability of any 
other resolvable cellular protein (15). 

As suggested by the loss of prelabeled 
FRP (Table 1, experiments 1 and 2), treat- 
ment of cells with iron or heme leads to a 
substantial reduction in the total FRP de- 
tectable by protein immunoblot analysis 
(16) (Table 1, experiment 3). However, 
the ditlerence between the residual amounts 
of prelabeled FRP (7%) (Fig. 1A) and total 
FRP (37%) (Table 1, experiment 3) after a 
4-hour treatment with 50 pM heme may be 
a result of the de novo synthesis of nonra- 
dioactive FRP in the presence of heme. 

The increase in FRP produced by ALA 
treatment (Table 1, experiment 1) suggests 
that ALA, or a porphyrin product, might 
stabilize FRP by counteracting its degrada- 
tion. This effect was inhibited by SA but 
not by Desferal (Table 1, experiment 2), 
which suggests that a precursor to heme, 
rather than heme itself, is responsible for 
FRP stabilization. In other experiments 
(15), we did not observe any effect of ALA 
or iron on the rate of FRP synthesis. 

Whereas the conditions that potentiate 

FRP degradation also induce femtin syn- 
thesis (1 7), the conditions that counteract 
FRP degradation inhibit femtin synthesis 
induction. Desferal(200 pM), for example, 
completely inhibited femtin synthesis in- 
duced by Tf, but had little or no effect on 
that induced by heme (18) (Fig. 2). Des- 
feral's effects were similar to those noted for 
FRP stability. Similarly, SA inhibited fer- 
ritin synthesis induced by femc ammonium 
citrate (FAC) or by Tf, but not that in- 
duced by heme (Table 2) (1 9). These re- 
sults show that in the absence of significant 
porphyrin synthesis, iron by itself is a poor 
inducer of femtin synthesis just as it is a 
poor stimulator of FRP degradation. The 
porphyrin precursors ALA and porphobil- 
inogen (PBG) stimulated induction of fer- 
ritin synthesis at optimal iron concentra- 
tions (Table 2, experiment 2); however, at 
suboptimal iron concentrations (Table 2) 
or soon after addition of iron (3 to 4 hours) 
(15), these same precursors inhibited in- 
duction. These results reflect that at very 
low iron concentrations ALA stabilized 
FRP, but at higher iron concentrations it 
promoted FRP degradation (Table 1). 
Thus, a porphyrin intermediate may coun- 
teract the derepressive effect of heme by 
inhibiting FRP degradation. 

Our results indicate that iron, probably 
acting through heme, can trigger the deg- 
radation of FRP: the resulting deficit in FRP 
causes derepression of femtin and erythroid 
ALA-synthase mRNA translation and de- 
stabilization of Tf receptor mRNA. This 
process represents a novel mechanism for 
replatinggene expression. Although rapid 
degradation of regulatory factors is com- 
monly seen in transcriptionally controlled 
systems (20), an analogous mechanism has 
not been previously observed at the trans- 
lational level. A slight imbalance between 
the rates of FRP synthesis and degradation, 
such as might be effected by a slight rise in 
the intracellular heme concentration, could 
lead to the derepression of femtin synthe- 
sis. This might explain why such large 
amounts of heme are needed to derepress 
femtin synthesis in vitro, where FRP cross- 
linking (2 1) but not degradation occurs. 
Because the inductive effect of heme may 
be counteracted by a porphyrin precursor, 
the heme-porphyrin ratio, rather than 
heme per se, might govern the activity of 
FRP. This could explain why heme and 
heme analogs can induce the translation of 
erythroid ALA-synthase mRNA (8, 22): 
action of this enzyme in the absence of a 
sufficient iron influx would lead to an excess 
of porphyrin precursors, which would stabi- 
lize FRP and shut down ALA-synthase pro- 
duction. A porphyrin precursor might act 
by binding to the heme site on FRP (21) 
without inactivating the protein or trigger- 
ing its degradation; protoporphyrin IX, for 

example, does not inhibit FRP function in 
vitro (9). 

In addition to serving as a substrate for 
heme synthesis, free iron may form an 
iron-sulfur center in FRP. A large number 
of amino acid residues in FRP are homolo- 
gous to those at the iron-binding center of 
aconitase and to isopropylmalate isomerase 

Table 1. Quantitation of the degradation of FRP 
that accompanies induction of ferriiin synthesis 
in vivo (14). Rabbit RAB-9 cells were pulse- 
labeled with =S-methionine plus 35S-cysteine 
for 2 hours. Excess unlabeled methionine was 
then added in the presence of 100 pM FAC 
plus Tf (0.2 mg/ml), 7.5 mM SA, 200 pM Des- 
feral, or ALA or heme as indicated, for 6 hours 
(or for the times shown in experiment 3). In 
experiments 1 and 2, labeled FRP was then 
immune-precipitated and analyzed by SDS- 
PAGE, fluorography, and densitometry. In ex- 
periment 3, lysates were submitted to protein 
immunoblot analysis (16), followed by densito- 
metric quantitation of FRP. 

Addition 

Relative 
radioactivity 
in FRP f% of 

Experiment 1 
None 
FAC + Tf 
FAC + Tf + ALA (2 mM) 
FAC + Tf + ALA (2 mM) + SA 
ALA (2 mM) 
SA + ALA (2 mM) 
Heme (1 0 pM) 
Heme (10 pM) + SA 
Heme (20 pM) 
Heme (20 pM) + SA 
Heme (50 pM) 
Heme (50 pM) + SA 
Heme (50 pM) + Desferal 
Heme (1 00 pM) 
Heme (100 pM) + SA 

Experiment 2 
None 
FAC + Tf 
FAC + Tf + ALA (0.5 mM) 
FAC + Tf + ALA (2 mM) 
FAC + Tf + ALA (8 mM) 
FAC + Tf + Desferal 
FAC + Tf + Desferal 

+ ALA (0.5 mM) 
FAC + Tf + Desferal 

+ ALA (2 mM) 
FAC + Tf + Desferal 

+ ALA (8 mM) 
FAC + Tf + SA + ALA 

(0.5 mM) 
FAC + Tf + SA + ALA (2 mM) 
FAC + Tf + SA + ALA (8 mM) 

Experiment 3 
None 
Heme (50 pM) (4 hours) 
FAC + Tf (5 hours) 
FAC + Tf + ALA (2 mM) 

(5 hours) 
Heme (50 pM) (2 hours) 
Heme (50 pM) (2 hours) 

then Desferal (6 hours) 
Desferal (6 hours) 
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(23), and FRP has aconitase act iv i ty (24). 
T h e  acquisition of iron b y  a n  Fe,S4 cluster 
in FRP t o  form a n  Fe4S4 cluster might 
result in inact ivat ion o f  the   rote in and 
consequent derepression o f  fer r i t in  synthe- 
sis (23). Although this mechanism is 
thought to be reversible, i t  i s  compatible 
w i t h  the essentially irreversible mecha- 
n ism proposed here. However, the apo 

Tf: 0 0 0 
U L  

Fig. 2. Effect of Des- 
feral on the induction of 
ferritin synthesis. Trans- 
formed mouse epitheli- H 

L 
--- 

al (C22) cells were 
I 

grown to confluence for N N N  " g 8 g B P  2 days as described Desferal: o o 0 o 8 o o o 8 o o o o o 0 o o o c 
(14, 17). Media were 
then supplemented with "" 
Desferal (Ciba-Geigy, 
Ardsley, New York), 
heme, or Tf at the con- ott ; r 

centrations indicated 6 & 
(micromolar). Where in- t B 
dicated, cells had been 

7 '0 

5. E -. 
pretreated for 16 hours 
with 50 FM Zn2+--BGDP IX, an inhibitor of heme oxygenase, or 50 FM ZnSO,. After 4 hours, cells were 
pulse-labeled, washed, and lysed, and mouse ferritin was precipitated with anti-mouse ferritin serum 
raised in rabbis. The immune-precipitated mouse ferritin was then analyzed by SDS-PAGE and 
fluorography. H, heavy chain; L, light chain. 

(lacking iron) form of the protein (6, 25) 
can bind t o  an  IRE; thus further experi- 
mentat ion i s  required t o  elucidate the 
precise roles of various forms o f  the iron- 
sulfur center for FRP activity. T h e  heme 
and iron-sulfur centers may represent dif- 
ferent ways o f  responding t o  iron excess 
and thus represent redundant control  
mechanisms (1 ) . 

Table 2. Effects of SA, ALA, and PBG on the induction of ferritin synthesis. Mouse C22 cells 
(experiment 1) or rabbit RAB-9 cells (experiment 2) were treated with FAC, heme, Tf, SA, ALA, or 
PBG at the concentrations indicated (1 7). After 4 hours (experiment 1) or 11 hours (experiment 2), 
cells were pulse-labeled for 1 hour with 35S-methionine plus 35S-cysteine, and labeled ferritin was 
analyzed by immune precipitation, SDS-PAGE, and fluorography. Fluorograms were quantitated by 
densitometry. Control values (without iron) were subtracted from all values shown in experiment 1. 
ND, no ferritin synthesis was detected. 

Other 
Relative 

FAC Heme Tf 
additions 

radioactivity in 
(FM) (mglml) 

(mM) Hchain L-chain 

Experiment 1 
None 
SA (2.5) 
SA (7.5) 
SA (15) 
None 
SA (2.5) 
SA (7.5) 
3 4  (15) 
None 
SA (2.5) 
SA (7.5) 
SA (15) 

Experiment 2 
None 
A M  (1 .O) 
None 
A M  (1.0) 
None 
A M  (1 .O) 
None 
A M  (1 .O) 
None 
A M  (0.5) 
None 
PBG (1 .O) 
PBG (10) 
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Occurrence of Sialic Acids in 
Dmsophila melanogaster 

Jiirgen Roth,* Andreas Kempf, Gerd Reuter, Roland Schauer, 
Walter J. Gehring 

Sialyiated oligosaccharides, which are cell type-specific and developmentally regulated, 
have been implicated in a variety of complex biological events. Their broad functional 
importance is reflected by their presence in a wide variety of phyla extending from Echi- 
nodermata through higher vertebrates. Here, sialic acids are detected throughout devd- 
opment in an insect, Drosophila. Homopolymers of a P,&linked sialic acid, polysialic acid, 
are developmentally regulated and only expressed during early Drosophila development. 

Sialic acids comprise a large family of regulated, have been implicated ina variety 
closely related derivatives of N-acetyl- of complex biological events (2). The ex- 
neuraminic acid and N-glycolylneuraminic pression of various specific sialyltransferases 
acid (1). Terminal glycosylation sequences, is the basis for the synthesis of such glyco- 
in particular sialylated oligosaccharides that sylation sequences (3). Sialic acids can be 
are cell type-specific and developmentally found in a variety of chemical linkages, 

Fig. 1. Cytochemical detection of sialic acid in Drosophila embryos with use of the L ima  flaws lectin 
(1 1). (A) Whole mount of a blastoderm stage embryo (20) showing intensely stained pole cells 
(arrowheads) and stained blastoderm cells. (B) Same embryo as in (A) at another plane of focus to 
demonstrate the honeycomb pattern of lectin staining on blastoderm cells. (C and D) Early 
gastrulation stage embryo. Staining of pole cells [arrowheads in (C)] and blastoderm cells is evident, 
along with additional labeling along the ventral [arrowheads in (D)] and cephalic [arrows in (D)] 
furrows. (E) Rapid phase of germ band elongation. Dorsal view of an embryo that exhibits staining of 
the ventral furrow (arrowheads) and the invaginating pole cells (arrows) as well as the honeycomb 
staining pattern. (F) Embryo with fully extended germ band. Small groups of cells at both sides of the 
ventral furrow are more intensely stained than neighboring cells. (G) Embryo after germ band 
shortening and during dorsal closure exhibits staining in the ventral nervous system (arrowheads) and 
the brain ganglia (arrows). In all photographs embryos are oriented wlh the anterior end to the right. 
Scale bar = 0.1 mm. 

including linkage to different penultimate 
sugars of a glycosylation sequence. Specific 
sequences expressed in one context may be 
critical for biological recognition but may 
have no function in another context (2) as 
shown in studies of sialic acids during orga- 
nogenesis (4), cell differentiation (5 ) ,  en- 
dothelial cell leukocyte adhesion molecule 
(ELAM-1)-mediated cell adhesion (6) ,  in- 
teraction of viruses and certain pathogenic 
bacteria with their host cells (7), and tumor 
cell invasiveness (8). Sialic acids are found 
in the Echknodermata and in most chordates 
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